Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

Winkelmann T, Ratjens S, Bartsch M, Rode C, Niehaus K, Bednarz H (2015)
Frontiers in Plant Science 6: 597.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Plant Science
Band
6
Art.-Nr.
597
ISSN
PUB-ID

Zitieren

Winkelmann T, Ratjens S, Bartsch M, Rode C, Niehaus K, Bednarz H. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa. Frontiers in Plant Science. 2015;6: 597.
Winkelmann, T., Ratjens, S., Bartsch, M., Rode, C., Niehaus, K., & Bednarz, H. (2015). Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa. Frontiers in Plant Science, 6, 597. doi:10.3389/fpls.2015.00597
Winkelmann, T., Ratjens, S., Bartsch, M., Rode, C., Niehaus, K., and Bednarz, H. (2015). Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa. Frontiers in Plant Science 6:597.
Winkelmann, T., et al., 2015. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa. Frontiers in Plant Science, 6: 597.
T. Winkelmann, et al., “Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa”, Frontiers in Plant Science, vol. 6, 2015, : 597.
Winkelmann, T., Ratjens, S., Bartsch, M., Rode, C., Niehaus, K., Bednarz, H.: Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa. Frontiers in Plant Science. 6, : 597 (2015).
Winkelmann, Traud, Ratjens, Svenja, Bartsch, Melanie, Rode, Christina, Niehaus, Karsten, and Bednarz, Hanna. “Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa”. Frontiers in Plant Science 6 (2015): 597.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Regenerative potential, metabolic profile, and genetic stability of Brachypodium distachyon embryogenic calli as affected by successive subcultures.
Mamedes-Rodrigues TC, Batista DS, Vieira NM, Matos EM, Fernandes D, Nunes-Nesi A, Cruz CD, Viccini LF, Nogueira FTS, Otoni WC., Protoplasma 255(2), 2018
PMID: 29080994
Embryogenic Callus as Target for Efficient Transformation of Cyclamen persicum Enabling Gene Function Studies.
Ratjens S, Mortensen S, Kumpf A, Bartsch M, Winkelmann T., Front Plant Sci 9(), 2018
PMID: 30087683
Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development.
de Oliveira LF, Elbl P, Navarro BV, Macedo AF, Dos Santos AL, Floh EI, Cooke J., Tree Physiol 37(1), 2017
PMID: 28175909

55 References

Daten bereitgestellt von Europe PubMed Central.

A comparison between Theobroma cacao L. zygotic embryogenesis and somatic embryogenesis from floral explants.
Alemanno L., Berthouly A., Michaux-Ferreiere N.., 1997
Proteomic analysis of somatic embryogenesis in Cyclamen persicum Mill.
Bian F., Zheng C., Qu F., Gong X., You C.., 2010
GABA in plants: just a metabolite?
Bouche N, Fromm H., Trends Plant Sci. 9(3), 2004
PMID: 15003233
Structural analysis of cyclamen seed xyloglucan oligosaccharides using cellulase digestion and spectroscopic methods.
Braccini I, Herve du Penhoat C, Michon V, Goldberg R, Clochard M, Jarvis MC, Huang ZH, Gage DA., Carbohydr. Res. 276(1), 1995
PMID: 8536253
Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies).
Businge E, Brackmann K, Moritz T, Egertsdotter U., Tree Physiol. 32(2), 2012
PMID: 22310018
Conifer somatic embryogenesis: II. Applications.
Cyr D., Klimaszewska K.., 2002
Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant.
Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E, Nielsen E., J. Exp. Bot. 60(3), 2009
PMID: 19204030
The role of photosynthesis and amino acid metabolism in the energy status during seed development.
Galili G, Avin-Wittenberg T, Angelovici R, Fernie AR., Front Plant Sci 5(), 2014
PMID: 25232362
A Comparison of soluble sugar accumulation in zygotic and somatic pea embryos.
Gorska-Koplinska K., Zrobek-Sokolnik A., Gorecki R., Lahuta L.., 2010
Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting.
Gorzolka K, Lissel M, Kessler N, Loch-Ahring S, Niehaus K., J. Biotechnol. 159(3), 2012
PMID: 22465293
Comparing carbohydrate status during Norway spruce seed development and somatic embryogenesis.
Gösslova M., Svobodova H., Lipavska H., Albrechtova J., Vreugdenhil D.., 2001

Grey-Wilson C.., 2002
Large impact of the apoplast on somatic embryogenesis in Cyclamen persicum offers possibilities for improved developmental control in vitro.
Hoenemann C, Richardt S, Kruger K, Zimmer AD, Hohe A, Rensing SA., BMC Plant Biol. 10(), 2010
PMID: 20426818
Tissue culture of Cyclamen spp.
Jalali N., Naderia R., Shahi-Gharahlara A., Teixeira J.., 2012
FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry.
Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O., Anal. Chem. 81(24), 2009
PMID: 19928838
The effect of explant material on somatic embryogenesis of Cyclamen persicum Mill.
Kiviharju E., Tuominen U., Tormalä T.., 1992
Somatic embryogenesis of Cyclamen persicum in liquid medium.
Kreuger M., Postma E., Brouwer Y., Van G.., 1995
Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development.
Kwon Y, Yu SI, Lee H, Yim JH, Zhu JK, Lee BH., Int J Mol Sci 13(3), 2012
PMID: 22489147
Seed maturity differentially mediates metabolic responses in black soybean.
Lee J, Hwang YS, Chang WS, Moon JK, Choung MG., Food Chem 141(3), 2013
PMID: 23870927
Genetics and biochemistry of seed flavonoids.
Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M., Annu Rev Plant Biol 57(), 2006
PMID: 16669768
The evolution of seeds.
Linkies A, Graeber K, Knight C, Leubner-Metzger G., New Phytol. 186(4), 2010
PMID: 20406407
Proline accumulation in plants: not only stress.
Mattioli R, Costantino P, Trovato M., Plant Signal Behav 4(11), 2009
PMID: 20009553
The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development
Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M., Physiol Plant 137(1), 2009
PMID: IND44245063
A revised medium for rapid growth and bio assays with tobacco tissue cultures.
Murashige T., Skoog F.., 1962
Proteomic and histological analyses of endosperm development in Cyclamen persicum as a basis for optimization of somatic embryogenesis
Mwangi JW, Christin Haase , Christina Rode , Frank Colditz , Hans-Peter Braun , Traud Winkelmann ., Plant Sci. 201-(), 2013
PMID: IND500605145
MeltDB: a software platform for the analysis and integration of metabolomics experiment data.
Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K, Stoye J, Goesmann A., Bioinformatics 24(23), 2008
PMID: 18765459
Somatic embryogenesis and plant regeneration from Cyclamen persicum Mill. leaf cultures.
Otani M., Shimada T.., 1991
Changes in soluble carbohydrates and starch amounts during somatic and zygotic embryogenesis of Acca sellowiana (Myrtaceae).
Pescador R., Kerbauy G., Kraus J., de W., Guerra M., de L.., 2008
Physical, metabolic and developmental functions of the seed coat.
Radchuk V, Borisjuk L., Front Plant Sci 5(), 2014
PMID: 25346737
Morphogenese und ihre Kontrolle an Gewebekulturen aus Carotten.
Reinert J.., 1958

Reinhardt S.., 2006
Enolases: storage compounds in seeds? Evidence from a proteomic comparison of zygotic and somatic embryos of Cyclamen persicum Mill.
Rode C, Gallien S, Heintz D, Van Dorsselaer A, Braun HP, Winkelmann T., Plant Mol. Biol. 75(3), 2011
PMID: 21249422
Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm.
Rolletschek H, Melkus G, Grafahrend-Belau E, Fuchs J, Heinzel N, Schreiber F, Jakob PM, Borisjuk L., Plant Cell 23(8), 2011
PMID: 21856793
Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme.
Rontein D, Nishida I, Tashiro G, Yoshioka K, Wu WI, Voelker DR, Basset G, Hanson AD., J. Biol. Chem. 276(38), 2001
PMID: 11461929
Characteristics of the phloem path: analysis and distribution of carbohydrates in the petiole of Cyclamen.
Rothe K., Porzel A., Neumann S., Grimm E.., 1999
“Introduction: botany, economic importance, cultivars, micropropagation of C. persicum,” in
Schwenkel H.., 2001
Plant regeneration via somatic embryogenesis from ovules of Cyclamen persicum Mill.
Schwenkel H., Winkelmann T.., 1998
The versatility of inositol phosphates as cellular signals.
Shears SB., Biochim. Biophys. Acta 1436(1-2), 1998
PMID: 9838040
Arabinogalactan proteins and the extracellular matrix surface network during peach palm somatic embryogenesis
Steinmacher DA, Saare‐Surminski K, Lieberei R., Physiol Plant 146(3), 2012
PMID: IND500590357
Growth and organized development of cultured cells. I. Growth and division of freely suspended cells.
Steward F., Mapes M., Smith J.., 1958
Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI).
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR., Metabolomics 3(3), 2007
PMID: 24039616
Somatic embryogenesis ofCyclamen persicum Mill. 'Anneke' from aseptic seedlings.
Takamura T, Miyajima I, Matsuo E., Plant Cell Rep. 15(1-2), 1995
PMID: 24185647
N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis.
van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC., Plant Physiol. 125(4), 2001
PMID: 11299367
Proline accumulation in plants: a review.
Verbruggen N, Hermans C., Amino Acids 35(4), 2008
PMID: 18379856
Assimilate uptake and the regulation of seed development.
Weber H, Heim U, Golombek S, Borisjuk L, Wobus U., Seed Sci. Res. 8(3), 1998
PMID: IND21987977
Histological study of organogenesis and embryogenesis in Cyclamen persicum tissue cultures: evidence for a single organogenetic pattern.
Wicart G., Mouras A., Lutz A.., 1984
Clonal propagation of Cyclamen persicum via somatic embryogenesis.
Winkelmann T., Methods Mol. Biol. 589(), 2010
PMID: 20099110
Establishing embryogenic suspension cultures in Cyclamen persicum ‘Purple Flamed.’
Winkelmann T., Hohe A., Schwenkel H.., 1998

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26300898
PubMed | Europe PMC

Suchen in

Google Scholar