Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

Santos-Carballal B, Aaldering LJ, Ritzefeld M, Pereira S, Sewald N, Moerschbacher BM, Goette M, Goycoolea FM (2015)
Scientific Reports 5(1): 13567.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Santos-Carballal, B.; Aaldering, L. J.; Ritzefeld, MarkusUniBi ; Pereira, S.; Sewald, NorbertUniBi ; Moerschbacher, B. M.; Goette, M.; Goycoolea, F. M.
Abstract / Bemerkung
Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan-hsa-miRNA-145 (CS-miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS-miRNA nanocomplexes were produced with a range of (+/-) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS-miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS-miRNA complexes offer a promising non-viral platform for breast cancer gene therapy.
Scientific Reports
Page URI


Santos-Carballal B, Aaldering LJ, Ritzefeld M, et al. Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Scientific Reports. 2015;5(1): 13567.
Santos-Carballal, B., Aaldering, L. J., Ritzefeld, M., Pereira, S., Sewald, N., Moerschbacher, B. M., Goette, M., et al. (2015). Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Scientific Reports, 5(1), 13567. doi:10.1038/srep13567
Santos-Carballal, B., Aaldering, L. J., Ritzefeld, M., Pereira, S., Sewald, N., Moerschbacher, B. M., Goette, M., and Goycoolea, F. M. (2015). Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Scientific Reports 5:13567.
Santos-Carballal, B., et al., 2015. Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Scientific Reports, 5(1): 13567.
B. Santos-Carballal, et al., “Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells”, Scientific Reports, vol. 5, 2015, : 13567.
Santos-Carballal, B., Aaldering, L.J., Ritzefeld, M., Pereira, S., Sewald, N., Moerschbacher, B.M., Goette, M., Goycoolea, F.M.: Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Scientific Reports. 5, : 13567 (2015).
Santos-Carballal, B., Aaldering, L. J., Ritzefeld, Markus, Pereira, S., Sewald, Norbert, Moerschbacher, B. M., Goette, M., and Goycoolea, F. M. “Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells”. Scientific Reports 5.1 (2015): 13567.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer.
Curtin CM, Castaño IM, O'Brien FJ., Adv Healthc Mater 7(1), 2018
PMID: 29068566
Biopolymer-Based Nanoparticles for Cystic Fibrosis Lung Gene Therapy Studies.
Fernández Fernández E, Santos-Carballal B, de Santi C, Ramsey JM, MacLoughlin R, Cryan SA, Greene CM., Materials (Basel) 11(1), 2018
PMID: 29342838
Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies.
Santos-Carballal B, Fernández Fernández E, Goycoolea FM., Polymers (Basel) 10(4), 2018
PMID: 30966479
Non-viral based miR delivery and recent developments.
Labatut AE, Mattheolabakis G., Eur J Pharm Biopharm 128(), 2018
PMID: 29679644
Cellular responses of hyaluronic acid-coated chitosan nanoparticles.
Almalik A, Alradwan I, Majrashi MA, Alsaffar BA, Algarni AT, Alsuabeyl MS, Alrabiah H, Tirelli N, Alhasan AH., Toxicol Res (Camb) 7(5), 2018
PMID: 30310671
Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles.
Terrón-Mejía KA, Martínez-Benavidez E, Higuera-Ciapara I, Virués C, Hernández J, Domínguez Z, Argüelles-Monal W, Goycoolea FM, López-Rendón R, Gama Goicochea A., Nanomaterials (Basel) 8(6), 2018
PMID: 29895747
An investigation of the interactions between an E. coli bacterial quorum sensing biosensor and chitosan-based nanocapsules.
Qin X, Engwer C, Desai S, Vila-Sanjurjo C, Goycoolea FM., Colloids Surf B Biointerfaces 149(), 2017
PMID: 27792985
In Vitro Dose Studies on Chitosan Nanoplexes for microRNA Delivery in Breast Cancer Cells.
Kaban K, Salva E, Akbuga J., Nucleic Acid Ther 27(1), 2017
PMID: 27763825
Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids.
Mokhtarzadeh A, Alibakhshi A, Hashemi M, Hejazi M, Hosseini V, de la Guardia M, Ramezani M., J Control Release 245(), 2017
PMID: 27884808
Nanocarriers for microRNA delivery in cancer medicine.
Fernandez-Piñeiro I, Badiola I, Sanchez A., Biotechnol Adv 35(3), 2017
PMID: 28286148
Therapeutic targeting of non-coding RNAs in cancer.
Slaby O, Laga R, Sedlacek O., Biochem J 474(24), 2017
PMID: 29242381
SYBR Gold Fluorescence Quenching is a Sensitive Probe of Chitosan-microRNA Interactions.
Santos-Carballal B, Swamy MJ, Moerschbacher BM, Goycoolea FM., J Fluoresc 26(1), 2016
PMID: 26511953
Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line.
Fernández Fernández E, Santos-Carballal B, Weber WM, Goycoolea FM., Int J Pharm 502(1-2), 2016
PMID: 26875537
Omics for Investigating Chitosan as an Antifungal and Gene Modulator.
Lopez-Moya F, Lopez-Llorca LV., J Fungi (Basel) 2(1), 2016
PMID: 29376928
Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device.
Magalhães GA, Moura Neto E, Sombra VG, Richter AR, Abreu CM, Feitosa JP, Paula HC, Goycoolea FM, de Paula RC., Int J Biol Macromol 88(), 2016
PMID: 27041650
microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements.
Schwickert A, Weghake E, Brüggemann K, Engbers A, Brinkmann BF, Kemper B, Seggewiß J, Stock C, Ebnet K, Kiesel L, Riethmüller C, Götte M., PLoS One 10(12), 2015
PMID: 26657485

50 References

Daten bereitgestellt von Europe PubMed Central.

Hallmarks of cancer: the next generation.
Hanahan D, Weinberg RA., Cell 144(5), 2011
PMID: 21376230
Tumor suppressor microRNAs: a novel non-coding alliance against cancer.
Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, Muti P, Strano S, Yarden Y., FEBS Lett. 588(16), 2014
PMID: 24681102
Oncomirs - microRNAs with a role in cancer.
Esquela-Kerscher A, Slack FJ., Nat. Rev. Cancer 6(4), 2006
PMID: 16557279
MicroRNA and cancer--a brief overview.
Acunzo M, Romano G, Wernicke D, Croce CM., Adv Biol Regul 57(), 2014
PMID: 25294678
MicroRNAs and other non-coding RNAs as targets for anticancer drug development.
Ling H, Fabbri M, Calin GA., Nat Rev Drug Discov 12(11), 2013
PMID: 24172333
Non-viral vectors for gene-based therapy
Viral and non-viral vectors in gene therapy: technology development and clinical trials.
Lundstrom K, Boulikas T., Technol. Cancer Res. Treat. 2(5), 2003
PMID: 14529313
PAMAM dendrimer roles in gene delivery methods and stem cell research.
Daneshvar N, Abdullah R, Shamsabadi FT, How CW, Mh MA, Mehrbod P., Cell Biol. Int. 37(5), 2013
PMID: 23504853
Liposomal siRNA nanocarriers for cancer therapy.
Ozpolat B, Sood AK, Lopez-Berestein G., Adv. Drug Deliv. Rev. 66(), 2013
PMID: 24384374
Chitosan-based formulations for delivery of DNA and siRNA.
Mao S, Sun W, Kissel T., Adv. Drug Deliv. Rev. 62(1), 2009
PMID: 19796660
Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA
Chitin/chitosan: modifications and their unlimited application potential—an overview
Transfection efficiency of chitosan vectors: Effect of polymer molecular weight and degree of deacetylation
Water-soluble and low molecular weight chitosan-based plasmid DNA delivery.
Lee M, Nah JW, Kwon Y, Koh JJ, Ko KS, Kim SW., Pharm. Res. 18(4), 2001
PMID: 11451027
Evaluation of chitosan salts as non-viral gene vectors in CHO-K1 cells.
Weecharangsan W, Opanasopit P, Ngawhirunpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U, Lee RJ., Int J Pharm 348(1-2), 2007
PMID: 17714894
Intracellular trafficking and decondensation kinetics of chitosan-pDNA polyplexes.
Thibault M, Nimesh S, Lavertu M, Buschmann MD., Mol. Ther. 18(10), 2010
PMID: 20628361
Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking.
Strand SP, Lelu S, Reitan NK, de Lange Davies C, Artursson P, Varum KM., Biomaterials 31(5), 2009
PMID: 19857892
Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery
Chitosan as a carrier for targeted delivery of small interfering RNA.
Rudzinski WE, Aminabhavi TM., Int J Pharm 399(1-2), 2010
PMID: 20732398
MicroRNA Conjugated Gold Nanoparticles and Cell Transfection (vol 84, pg 26, 2012)
A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells.
Ghosh R, Singh LC, Shohet JM, Gunaratne PH., Biomaterials 34(3), 2012
PMID: 23111335
Molecular weight manipulation of chitosan II: prediction and control of extent of depolymerization by nitrous acid
Determination of degree of deacetylation of chitosan by H NMR spectroscopy
A validated 1H NMR method for the determination of the degree of deacetylation of chitosan.
Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D, Buschmann MD, Gupta A., J Pharm Biomed Anal 32(6), 2003
PMID: 12907258
Chitin and chitosan: Properties and applications
Characterization of chitosan by steric exclusion chromatography
Biophysical properties of chitosan/siRNA polyplexes: profiling the polymer/siRNA interactions and bioactivity.
Holzerny P, Ajdini B, Heusermann W, Bruno K, Schuleit M, Meinel L, Keller M., J Control Release 157(2), 2011
PMID: 21884740
Sequence Dependence of the Circular-Dichroism of Synthetic Double-Stranded Rnas
Circular dichroism techniques: biomolecular and nanostructural analyses- a review.
Ranjbar B, Gill P., Chem Biol Drug Des 74(2), 2009
PMID: 19566697
Chitosan nanoparticles: a survey of preparation methods.
Grenha A., J Drug Target 20(4), 2012
PMID: 22296336
The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing.
Liu X, Howard KA, Dong M, Andersen MO, Rahbek UL, Johnsen MG, Hansen OC, Besenbacher F, Kjems J., Biomaterials 28(6), 2007
PMID: 17126901
RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system.
Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J., Mol. Ther. 14(4), 2006
PMID: 16829204
MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors.
Adammek M, Greve B, Kassens N, Schneider C, Bruggemann K, Schuring AN, Starzinski-Powitz A, Kiesel L, Gotte M., Fertil. Steril. 99(5), 2013
PMID: 23312222
miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness.
Gotte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, Ibrahim SA, Peddibhotla S, Teng YH, Low JY, Ebnet K, Kiesel L, Yip GW., Oncogene 29(50), 2010
PMID: 20818426
Chitosan-based siRNA delivery systems
Structure of chitosan determines its interactions with mucin.
Menchicchi B, Fuenzalida JP, Bobbili KB, Hensel A, Swamy MJ, Goycoolea FM., Biomacromolecules 15(10), 2014
PMID: 25122160
Dynamics of chitosan by (1)h NMR relaxation.
Novoa-Carballal R, Fernandez-Megia E, Riguera R., Biomacromolecules 11(8), 2010
PMID: 20593894
New insights into chitosan-DNA interactions using isothermal titration microcalorimetry.
Ma PL, Lavertu M, Winnik FM, Buschmann MD., Biomacromolecules 10(6), 2009
PMID: 19419142
Chitin and chitosan in gel network systems
Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles.
Corsi K, Chellat F, Yahia L, Fernandes JC., Biomaterials 24(7), 2003
PMID: 12527266

Formation and characterisation of a physical chitin gel
Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion.
Rinaudo M, Milas M, Le Dung P., Int. J. Biol. Macromol. 15(5), 1993
PMID: 8251442


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 26324407
PubMed | Europe PMC

Suchen in

Google Scholar