Bumblebee Homing: The Fine Structure of Head Turning Movements

Boeddeker N, Mertes M, Dittmar L, Egelhaaf M (2015)
PLoS ONE 10(9): e0135020.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The flight paths consist of almost straight flight segments that are interspersed with rapid turns. These short and fast yaw turns (“saccades”) are usually accompanied by even faster head yaw turns that change gaze direction. Since a large part of image rotation is thereby reduced to brief instants of time, this behavioural pattern facilitates depth perception from visual motion parallax during the intersaccadic intervals. The detailed analysis of the fine structure of the bees’ head turning movements shows that the time course of single head saccades is very stereotypical. We find a consistent relationship between the duration, peak velocity and amplitude of saccadic head movements, which in its main characteristics resembles the so-called "saccadic main sequence" in humans. The fact that bumblebee head saccades are highly stereotyped as in humans, may hint at a common principle, where fast and precise motor control is used to reliably reduce the time during which the retinal images moves.
Erscheinungsjahr
2015
Zeitschriftentitel
PLoS ONE
Band
10
Ausgabe
9
Art.-Nr.
e0135020
ISSN
1932-6203
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
Page URI
https://pub.uni-bielefeld.de/record/2777568

Zitieren

Boeddeker N, Mertes M, Dittmar L, Egelhaaf M. Bumblebee Homing: The Fine Structure of Head Turning Movements. PLoS ONE. 2015;10(9): e0135020.
Boeddeker, N., Mertes, M., Dittmar, L., & Egelhaaf, M. (2015). Bumblebee Homing: The Fine Structure of Head Turning Movements. PLoS ONE, 10(9), e0135020. doi:10.1371/journal.pone.0135020
Boeddeker, N., Mertes, M., Dittmar, L., and Egelhaaf, M. (2015). Bumblebee Homing: The Fine Structure of Head Turning Movements. PLoS ONE 10:e0135020.
Boeddeker, N., et al., 2015. Bumblebee Homing: The Fine Structure of Head Turning Movements. PLoS ONE, 10(9): e0135020.
N. Boeddeker, et al., “Bumblebee Homing: The Fine Structure of Head Turning Movements”, PLoS ONE, vol. 10, 2015, : e0135020.
Boeddeker, N., Mertes, M., Dittmar, L., Egelhaaf, M.: Bumblebee Homing: The Fine Structure of Head Turning Movements. PLoS ONE. 10, : e0135020 (2015).
Boeddeker, Norbert, Mertes, Marcel, Dittmar, Laura, and Egelhaaf, Martin. “Bumblebee Homing: The Fine Structure of Head Turning Movements”. PLoS ONE 10.9 (2015): e0135020.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:33Z
MD5 Prüfsumme
ea9a740313adc31915fb6f9fce9cf314

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26352836
PubMed | Europe PMC

Suchen in

Google Scholar