Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae

Müller C, van Loon J, Ruschioni S, de Nicola GR, Olsen CE, Iori R, Agerbirk N (2015)
Phytochemistry 118: 139-148.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Müller, CarolineUniBi; van Loon, J; Ruschioni, S; de Nicola, GR; Olsen, CE; Iori, R; Agerbirk, N
Erscheinungsjahr
2015
Zeitschriftentitel
Phytochemistry
Band
118
Seite(n)
139-148
ISSN
0031-9422
Page URI
https://pub.uni-bielefeld.de/record/2777397

Zitieren

Müller C, van Loon J, Ruschioni S, et al. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry. 2015;118:139-148.
Müller, C., van Loon, J., Ruschioni, S., de Nicola, G. R., Olsen, C. E., Iori, R., & Agerbirk, N. (2015). Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry, 118, 139-148. doi:10.1016/j.phytochem.2015.08.007
Müller, Caroline, van Loon, J, Ruschioni, S, de Nicola, GR, Olsen, CE, Iori, R, and Agerbirk, N. 2015. “Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae”. Phytochemistry 118: 139-148.
Müller, C., van Loon, J., Ruschioni, S., de Nicola, G. R., Olsen, C. E., Iori, R., and Agerbirk, N. (2015). Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry 118, 139-148.
Müller, C., et al., 2015. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry, 118, p 139-148.
C. Müller, et al., “Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae”, Phytochemistry, vol. 118, 2015, pp. 139-148.
Müller, C., van Loon, J., Ruschioni, S., de Nicola, G.R., Olsen, C.E., Iori, R., Agerbirk, N.: Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry. 118, 139-148 (2015).
Müller, Caroline, van Loon, J, Ruschioni, S, de Nicola, GR, Olsen, CE, Iori, R, and Agerbirk, N. “Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae”. Phytochemistry 118 (2015): 139-148.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Moringin Induces Neural Differentiation in the Stem Cell of the Human Periodontal Ligament.
Romeo L, Diomede F, Gugliandolo A, Scionti D, Lo Giudice F, Lanza Cariccio V, Iori R, Bramanti P, Trubiani O, Mazzon E., Sci Rep 8(1), 2018
PMID: 29904155
A Combined Approach of NMR and Mass Spectrometry Techniques Applied to the α-Cyclodextrin/Moringin Complex for a Novel Bioactive Formulation †.
Mathiron D, Iori R, Pilard S, Soundara Rajan T, Landy D, Mazzon E, Rollin P, Djedaïni-Pilard F., Molecules 23(7), 2018
PMID: 30011859
Treatment of Periodontal Ligament Stem Cells with MOR and CBD Promotes Cell Survival and Neuronal Differentiation via the PI3K/Akt/mTOR Pathway.
Lanza Cariccio V, Scionti D, Raffa A, Iori R, Pollastro F, Diomede F, Bramanti P, Trubiani O, Mazzon E., Int J Mol Sci 19(8), 2018
PMID: 30096889
The α-Cyclodextrin/Moringin Complex: A New Promising Antimicrobial Agent against Staphylococcus aureus.
Romeo L, Lanza Cariccio V, Iori R, Rollin P, Bramanti P, Mazzon E., Molecules 23(9), 2018
PMID: 30134562
The Role of the Glucosinolate-Myrosinase System in Mediating Greater Resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae.
Müller C, Schulz M, Pagnotta E, Ugolini L, Yang T, Matthes A, Lazzeri L, Agerbirk N., J Chem Ecol 44(12), 2018
PMID: 30218254
Hydrogen Sulfide (H₂S) Releasing Capacity of Isothiocyanates from Moringa oleifera Lam.
Wang X, Liu Y, Liu X, Lin Y, Zheng X, Lu Y., Molecules 23(11), 2018
PMID: 30380667
The Isothiocyanate Isolated from Moringa oleifera Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson's Disease.
Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E., Rejuvenation Res 20(1), 2017
PMID: 27245199
Contact chemosensation of phytochemicals by insect herbivores.
Pentzold S, Burse A, Boland W., Nat Prod Rep 34(5), 2017
PMID: 28485430
Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment.
Giacoppo S, Iori R, Rollin P, Bramanti P, Mazzon E., BMC Complement Altern Med 17(1), 2017
PMID: 28705212
The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling.
Michl C, Vivarelli F, Weigl J, De Nicola GR, Canistro D, Paolini M, Iori R, Rascle A., PLoS One 11(6), 2016
PMID: 27304884
Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates.
Olsen CE, Huang XC, Hansen CIC, Cipollini D, Ørgaard M, Matthes A, Geu-Flores F, Koch MA, Agerbirk N., Phytochemistry 132(), 2016
PMID: 27743600
Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis.
Agerbirk N, De Nicola GR, Olsen CE, Müller C, Iori R., Phytochemistry 118(), 2015
PMID: 26342619

67 References

Daten bereitgestellt von Europe PubMed Central.

Effects of indole glucosinolates on performance and sequestration by the sawfly Athalia rosae and consequences of feeding on the plant defense system
Abdalsamee, J. Chem. Ecol. 38(), 2013
Rapid incorporation of glucosinolates as a strategy used by a herbivore to prevent activation by myrosinases.
Abdalsamee MK, Giampa M, Niehaus K, Muller C., Insect Biochem. Mol. Biol. 52(), 2014
PMID: 25017143
Glucosinolate structures in evolution.
Agerbirk N, Olsen CE., Phytochemistry 77(), 2012
PMID: 22405332
A common pathway for metabolism of 4-hydroxybenzylglucosinolate in Pieris and Anthocaris (Lepidoptera: Pieridae)
Agerbirk, Biochem. Syst. Ecol. 34(), 2006
Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes.
Agerbirk N, Warwick SI, Hansen PR, Olsen CE., Phytochemistry 69(17), 2008
PMID: 18995873
Variable glucosinolate profiles of Cardamine pratensis (Brassicaceae) with equal chromosome numbers.
Agerbirk N, Olsen CE, Chew FS, Orgaard M., J. Agric. Food Chem. 58(8), 2010
PMID: 20334382
Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis.
Agerbirk N, De Nicola GR, Olsen CE, Muller C, Iori R., Phytochemistry 118(), 2015
PMID: 26342619
Identification of glucosinolate congeners able to form DNA adducts and to induce mutations upon activation by myrosinase.
Baasanjav-Gerber C, Monien BH, Mewis I, Schreiner M, Barillari J, Iori R, Glatt H., Mol Nutr Food Res 55(5), 2011
PMID: 21213326
Chemosensory and behavioural responses of the turnip sawfly, Athalia rosae, to glucosinolates and isothiocyanates
Barker, Chemoecology 16(), 2006
How novel are the chemical weapons of garlic mustard in North American forest understories
Barto EKathryn, Powell JeffR, Cipollini Don., Biol. Invasions 12(10), 2010
PMID: IND44429501
Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.
Beran F, Pauchet Y, Kunert G, Reichelt M, Wielsch N, Vogel H, Reinecke A, Svatos A, Mewis I, Schmid D, Ramasamy S, Ulrichs C, Hansson BS, Gershenzon J, Heckel DG., Proc. Natl. Acad. Sci. U.S.A. 111(20), 2014
PMID: 24799680
Altering glucosinolate profiles modulates disease resistance in plants
Brader, Plant J. 34(), 2006
Biological targets of isothiocyanates.
Brown KK, Hampton MB., Biochim. Biophys. Acta 1810(9), 2011
PMID: 21704127
The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo.
Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, Rollin P, Barillari J, Manzotti C, Morazzoni P, D'Incalci M., Biochem. Pharmacol. 79(8), 2009
PMID: 20006591
Supercritical fluid chromatography as a method of analysis for the determination of 4-hydroxybenzylglucosinolate degradation products.
Buskov S, Hasselstrom J, Olsen CE, Sorensen H, Sorensen JC, Sorensen S., J. Biochem. Biophys. Methods 43(1-3), 2000
PMID: 10869674
Mustard oil glucosides as feeding stimulants for Pieris brassicae larvae in a semi-synthetic diet
David, Entomol. Exp. Appl. 9(), 1966
Isolation and identification of 4-α-rhamnosyloxy benzyl glucosinolate in Noccaea caerulescens showing intraspecific variation.
de Graaf RM, Krosse S, Swolfs AE, te Brinke E, Prill N, Leimu R, van Galen PM, Wang Y, Aarts MG, van Dam NM., Phytochemistry 110(), 2014
PMID: 25482220
Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera.
Forster N, Ulrichs C, Schreiner M, Muller CT, Mewis I., Food Chem 166(), 2014
PMID: 25053080
Antibacterial activity of glucomoringin bioactivated with myrosinase against two important pathogens affecting the health of long-term patients in hospitals
Galuppo, Molecules 18(), 2013
4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury.
Giacoppo S, Galuppo M, De Nicola GR, Iori R, Bramanti P, Mazzon E., Bioorg. Med. Chem. 23(1), 2014
PMID: 25497964
Near-silence of isothiocyanate carbon in (13)C NMR spectra: a case study of allyl isothiocyanate.
Glaser R, Hillebrand R, Wycoff W, Camasta C, Gates KS., J. Org. Chem. 80(9), 2015
PMID: 25882372
First synthesis of an O-glycosylated glucosinolate isolated from Moringa oleifera
Gueyrard, Tetrahedron Lett. 41(), 2000
Glucosinolate chemistry: synthesis of O-glycosylated derivatives of glucosinalbin
Gueyrard, Eur. J. Org. Chem. (), 2010
Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana
Hara, Plant Growth Regul. 69(), 2013
Naturally derived isothiocyanates (mustard oils) and their parent glucosides
Kjær, Fortschr. Chem. Org. Naturst. 18(), 1960
Isothiocyanates in myrosinase-treated seed extracts of Moringa peregrina
Kjær, Phytochemistry 18(), 1979
Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities
Li, J. Chem. Ecol. 26(), 2000
Behavioural and sensory responses to some neem compounds by Pieris brassicae larvae.
Lou LE, Loon JJAvan, Schoonhoven LM., Physiol. Entomol. 20(2), 1995
PMID: IND20482060
The mustard oil bomb – compartmentation of the myrosinase system
Matile, Biochem. Physiol. Pflanzen 175(), 1980
Physiology of the lateral galeal sensillum in red turnip beetle larvae (entomoscelis-American brown) – responses to NaCl, glucosinolates and other glycosides
Mitchell, J. Comp. Physiol. 144(), 1981
Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae
Müller, Phytochem. Rev. 8(), 2009
Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore – and vice versa
Müller, Chemoecology 16(), 2006
Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae.
Muller C, Agerbirk N, Olsen CE, Boeve JL, Schaffner U, Brakefield PM., J. Chem. Ecol. 27(12), 2001
PMID: 11789955
Host plant derived feeding deterrence towards ants in the turnip sawfly Athalia rosae
Muller C, Boeve J, Brakefield PM., Entomol. Exp. Appl. 104(1), 2002
PMID: IND23321180
Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles.
Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA, Wadhams LJ, Woodcock CM., J. Chem. Ecol. 17(6), 1991
PMID: 24259180
Isolation of glucosinolates and the identification of o-(α-l-rhamnopyranosyloxy)benzylglucosinolate from Reseda odorata
Olsen, Phytochemistry 18(), 1979
Glucosinolates in Sesamoides canescens and S. pygmaea: identification of 2-α-l-arabinopyranosyloxy)-2-phenylethylglucosinolate
Olsen, Phytochemistry 20(), 1981
Sinalexin, a phytoalexin from white mustard elicited by destruxin B and Alternaria brassicae
Pedras, Phytochemistry 46(), 1997
The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence.
Pentzold S, Zagrobelny M, Roelsgaard PS, Moller BL, Bak S., PLoS ONE 9(3), 2014
PMID: 24625698
A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
Picmanova M, Neilson EH, Motawia MS, Olsen CE, Agerbirk N, Gray CJ, Flitsch S, Meier S, Silvestro D, Jorgensen K, Sanchez-Perez R, Moller BL, Bjarnholt N., Biochem. J. 469(3), 2015
PMID: 26205491
An inventory of taste in caterpillars: each species its own key
Schoonhoven, Acta Zool. Acad. Sci. Hung. 48(), 2002

Schoonhoven, 2005
Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore.
Stauber EJ, Kuczka P, van Ohlen M, Vogt B, Janowitz T, Piotrowski M, Beuerle T, Wittstock U., PLoS ONE 7(4), 2012
PMID: 22536404
Differential sensory perception of plant compounds by insects
Visser, ACS Symp. Ser. 208(), 1983
Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro.
Waterman C, Cheng DM, Rojas-Silva P, Poulev A, Dreifus J, Lila MA, Raskin I., Phytochemistry 103(), 2014
PMID: 24731259
Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
Winde I, Wittstock U., Phytochemistry 72(13), 2011
PMID: 21316065
Constitutive plant toxins and their role in defense against herbivores and pathogens
Wittstock, Curr. Opin. Plant Biol. 5(), 2002
Successful herbivore attack due to metabolic diversion of a plant chemical defense.
Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H., Proc. Natl. Acad. Sci. U.S.A. 101(14), 2004
PMID: 15051878
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26318325
PubMed | Europe PMC

Suchen in

Google Scholar