The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism

Kleinbölting N, Huep G, Appelhagen I, Viehöver P, Li Y, Weisshaar B (2015)
Molecular Plant 8(11): 1651-1664.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Transformation by Agrobacterium tumefaciens, an important tool in modern plant research, involves the integration of T-DNA initially present on a plasmid in agrobacteria into the genome of plant cells. The process of attachment of the agrobacteria to plant cells and the transport of T-DNA into the cell and further to the nucleus has been well described. However, the exact mechanism of integration into the host's DNA is still unclear, although several models have been proposed. During confirmation of T-DNA insertion alleles from the GABI-Kat collection of Arabidopsis thaliana mutants, we have generated about 34 000 sequences from the junctions between inserted T-DNA and adjacent genome regions. Here, we describe the evaluation of this dataset with regard to existing models for T-DNA integration. The results suggest that integration into the plant genome is mainly mediated by the endogenous plant DNA repair machinery. The observed integration events showed characteristics highly similar to those of repair sites of double-strand breaks with respect to microhomology and deletion sizes. In addition, we describe unexpected integration events, such as large deletions and inversions at the integration site that are relevant for correct interpretation of results from T-DNA insertion mutants in reverse genetics experiments.
Erscheinungsjahr
2015
Zeitschriftentitel
Molecular Plant
Band
8
Ausgabe
11
Seite(n)
1651-1664
ISSN
1674-2052
eISSN
1752-9867
Page URI
https://pub.uni-bielefeld.de/record/2770216

Zitieren

Kleinbölting N, Huep G, Appelhagen I, Viehöver P, Li Y, Weisshaar B. The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism. Molecular Plant. 2015;8(11):1651-1664.
Kleinbölting, N., Huep, G., Appelhagen, I., Viehöver, P., Li, Y., & Weisshaar, B. (2015). The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism. Molecular Plant, 8(11), 1651-1664. doi:10.1016/j.molp.2015.08.011
Kleinbölting, N., Huep, G., Appelhagen, I., Viehöver, P., Li, Y., and Weisshaar, B. (2015). The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism. Molecular Plant 8, 1651-1664.
Kleinbölting, N., et al., 2015. The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism. Molecular Plant, 8(11), p 1651-1664.
N. Kleinbölting, et al., “The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism”, Molecular Plant, vol. 8, 2015, pp. 1651-1664.
Kleinbölting, N., Huep, G., Appelhagen, I., Viehöver, P., Li, Y., Weisshaar, B.: The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism. Molecular Plant. 8, 1651-1664 (2015).
Kleinbölting, Nils, Huep, Gunnar, Appelhagen, Ingo, Viehöver, Prisca, Li, Yong, and Weisshaar, Bernd. “The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism”. Molecular Plant 8.11 (2015): 1651-1664.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26343971
PubMed | Europe PMC

Suchen in

Google Scholar