What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper
Valverde JP, Schielzeth H (2015)
BMC Evolutionary Biology 15(1): 168.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Valverde, J. Pablo;
Schielzeth, HolgerUniBi
Einrichtung
Abstract / Bemerkung
Background: Colour polymorphisms are a fascinating facet of many natural populations of plants and animals, and the selective processes that maintain such variation are as relevant as the processes which promote their development. Orthoptera, the insect group that encompasses grasshoppers and bush crickets, includes a particularly large number of species that are colour polymorphic with a marked green-brown polymorphism being particularly widespread. Colour polymorphism has been associated with the need for crypsis and background matching and background-dependent homochromy has been described in a few species. However, when and how different environmental conditions influence variation in colour remains poorly understood. Here we test for effects of background colour and ambient temperature on the occurrence of colour morph switches (green to brown or brown to green) and developmental darkening in the alpine dwelling club-legged grasshopper Gomphocerus sibiricus. Results: We monitored individually housed nymphae across three of their four developmental stages and into the first week after final ecdysis. Our data show an absence of colour morph switches in G. sibiricus, without a single switch observed in our sample. Furthermore, we test for an effect of temperature on colouration by manipulating radiant heat, a limiting factor in alpine habitats. Radiant heat had a significant effect on developmental darkening: individuals under low radiant heat tended to darken, while individuals under high radiant heat tended to lighten within nymphal stages. Young imagoes darkened under either condition. Conclusions: Our results indicate a plastic response to a variable temperature and indicate that melanin, a multipurpose pigment responsible for dark colouration and presumed to be costly, seems to be strategically allocated according to the current environmental conditions. Unlike other orthopterans, the species is apparently unable to switch colour morphs (green/brown) during development, suggesting that colour morphs are determined genetically (or very early during development) and that other processes have to contribute to crypsis and homochromy in this species.
Stichworte
Thermoregulation;
Phenotypic plasticity;
Environmental predictability;
Orthoptera;
Developmental plasticity;
Crypsis;
Homochromy;
Acrididae
Erscheinungsjahr
2015
Zeitschriftentitel
BMC Evolutionary Biology
Band
15
Ausgabe
1
Art.-Nr.
168
ISSN
1471-2148
Page URI
https://pub.uni-bielefeld.de/record/2769303
Zitieren
Valverde JP, Schielzeth H. What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology. 2015;15(1): 168.
Valverde, J. P., & Schielzeth, H. (2015). What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology, 15(1), 168. doi:10.1186/s12862-015-0419-9
Valverde, J. Pablo, and Schielzeth, Holger. 2015. “What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper”. BMC Evolutionary Biology 15 (1): 168.
Valverde, J. P., and Schielzeth, H. (2015). What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology 15:168.
Valverde, J.P., & Schielzeth, H., 2015. What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology, 15(1): 168.
J.P. Valverde and H. Schielzeth, “What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper”, BMC Evolutionary Biology, vol. 15, 2015, : 168.
Valverde, J.P., Schielzeth, H.: What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology. 15, : 168 (2015).
Valverde, J. Pablo, and Schielzeth, Holger. “What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper”. BMC Evolutionary Biology 15.1 (2015): 168.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
8 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts.
Yang M, Wang Y, Liu Q, Liu Z, Jiang F, Wang H, Guo X, Zhang J, Kang L., Elife 8(), 2019
PMID: 30616714
Yang M, Wang Y, Liu Q, Liu Z, Jiang F, Wang H, Guo X, Zhang J, Kang L., Elife 8(), 2019
PMID: 30616714
Host plants of the non-swarming edible bush cricket Ruspolia differens.
Opoke R, Nyeko P, Malinga GM, Rutaro K, Roininen H, Valtonen A., Ecol Evol 9(7), 2019
PMID: 31015975
Opoke R, Nyeko P, Malinga GM, Rutaro K, Roininen H, Valtonen A., Ecol Evol 9(7), 2019
PMID: 31015975
Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size.
Shah A, Hoffman JI, Schielzeth H., BMC Genomics 20(1), 2019
PMID: 31088494
Shah A, Hoffman JI, Schielzeth H., BMC Genomics 20(1), 2019
PMID: 31088494
Condition-dependence and sexual ornamentation: Effects of immune challenges on a highly sexually dimorphic grasshopper.
Valverde JP, Eggert H, Kurtz J, Schielzeth H., Insect Sci 25(4), 2018
PMID: 28229542
Valverde JP, Eggert H, Kurtz J, Schielzeth H., Insect Sci 25(4), 2018
PMID: 28229542
Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity.
Dieker P, Beckmann L, Teckentrup J, Schielzeth H., Ecol Evol 8(15), 2018
PMID: 30151148
Dieker P, Beckmann L, Teckentrup J, Schielzeth H., Ecol Evol 8(15), 2018
PMID: 30151148
Increase of Albinistic Hosts Caused by Gut Parasites Promotes Self-Transmission.
Tan S, Wang Y, Liu P, Ge Y, Li A, Xing Y, Hunter DM, Shi W., Front Microbiol 9(), 2018
PMID: 30042753
Tan S, Wang Y, Liu P, Ge Y, Li A, Xing Y, Hunter DM, Shi W., Front Microbiol 9(), 2018
PMID: 30042753
Morphological and colour morph clines along an altitudinal gradient in the meadow grasshopper Pseudochorthippus parallelus.
Köhler G, Samietz J, Schielzeth H., PLoS One 12(12), 2017
PMID: 29284051
Köhler G, Samietz J, Schielzeth H., PLoS One 12(12), 2017
PMID: 29284051
High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome.
Shah AB, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman JI., Ecol Evol 6(16), 2016
PMID: 27547349
Shah AB, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman JI., Ecol Evol 6(16), 2016
PMID: 27547349
70 References
Daten bereitgestellt von Europe PubMed Central.
The evolution of dominance in certain polymorphic species
Fisher RA., 1930
Fisher RA., 1930
Darwin C., 1871
Mayr E., 1942
Darwin C., 1859
Massive polymorphism and natural selection in Donacilla cornea (Poli, 1791) (Bivalvia: Mesodesmatidae)
Whiteley DAA, Owen DF, Smith DAS., 1997
Whiteley DAA, Owen DF, Smith DAS., 1997
Evolution and ecology of spider coloration.
Oxford GS, Gillespie RG., Annu. Rev. Entomol. 43(), 1998
PMID: 15012400
Oxford GS, Gillespie RG., Annu. Rev. Entomol. 43(), 1998
PMID: 15012400
A review of colour and pattern polymorphisms in anurans
Hoffman EA, Blouin MS., 2000
Hoffman EA, Blouin MS., 2000
A window on the genetics of evolution: MC1R and plumage colouration in birds.
Mundy NI., Proc. Biol. Sci. 272(1573), 2005
PMID: 16087416
Mundy NI., Proc. Biol. Sci. 272(1573), 2005
PMID: 16087416
The evolution of color polymorphism: crypticity, searching images, and apostatic selection
Bond AB., 2007
Bond AB., 2007
Linking color polymorphism maintenance and speciation.
Gray SM, McKinnon JS., Trends Ecol. Evol. (Amst.) 22(2), 2006
PMID: 17055107
Gray SM, McKinnon JS., Trends Ecol. Evol. (Amst.) 22(2), 2006
PMID: 17055107
Perceptual processes and the maintenance of polymorphism through frequency-dependent predation
Punzalan D, Rodd FH, Hughes KA., 2005
Punzalan D, Rodd FH, Hughes KA., 2005
Colour polymorphism and correlated characters: genetic mechanisms and evolution.
McKinnon JS, Pierotti ME., Mol. Ecol. 19(23), 2010
PMID: 21040047
McKinnon JS, Pierotti ME., Mol. Ecol. 19(23), 2010
PMID: 21040047
Majerus MEN., 1998
The variable coloration of the acridoid grasshoppers
Rowell CHF., 1971
Rowell CHF., 1971
Color pattern polymorphism
Dearn JM., 1990
Dearn JM., 1990
Key KHL., 1954
Bellmann H, Luquet CH., 2009
Bellmann H., 2006
Reversible colour change in Arthropoda.
Umbers KD, Fabricant SA, Gawryszewski FM, Seago AE, Herberstein ME., Biol Rev Camb Philos Soc 89(4), 2014
PMID: 24495279
Umbers KD, Fabricant SA, Gawryszewski FM, Seago AE, Herberstein ME., Biol Rev Camb Philos Soc 89(4), 2014
PMID: 24495279
Evolutionary significance of ontogenetic colour change in animals
Booth CL., 1990
Booth CL., 1990
Phylogenetic perspectives on the evolution of locust phase polyphenism
Song H., 2005
Song H., 2005
The physiology of locust phase polymorphism: an update.
Pener MP, Yerushalmi Y., J. Insect Physiol. 44(5-6), 1998
PMID: 12770154
Pener MP, Yerushalmi Y., J. Insect Physiol. 44(5-6), 1998
PMID: 12770154
Uvarov BP., 1966
Locust phase polymorphism and its endocrine relations
Pener MP., 1991
Pener MP., 1991
Density-dependent phase polyphenism in nonmodel locusts: A minireview
Song H., 2011
Song H., 2011
Environmental factors affecting the green/brown polymorphism in the Cyrtacanthacridine grasshopper Schistocerca vaga (Scudder)
Rowell CHF, Cannis TL., 1971
Rowell CHF, Cannis TL., 1971
Chromatic polymorphism and geophagy: Two outstanding characteristics of Rhammatocerus schistocercoides (Rehn 1906) grasshoppers in Brazil (Orthoptera, Acrididae, Gomphocerinae)
Lecoq M, Pierozzi I., 1996
Lecoq M, Pierozzi I., 1996
Richards OW, Waloff N., 1954
Phase variation in non-swarming grasshoppers
Rubtzov IA., 1935
Rubtzov IA., 1935
Nabours R., 1929
Coevolution of color pattern and thermoregulatory behavior in polymorphic pygmy grasshoppers Tetrix undulata.
Forsman A, Ringblom K, Civantos E, Ahnesjo J., Evolution 56(2), 2002
PMID: 11926503
Forsman A, Ringblom K, Civantos E, Ahnesjo J., Evolution 56(2), 2002
PMID: 11926503
Weitere Untersuchungen über Farbanpassung bei Oedaleus decorus
Ergene S., 1955
Ergene S., 1955
Ingrisch S, Köhler G., 1998
Pigments and color changes
Fuzeau-Braesch S., 1972
Fuzeau-Braesch S., 1972
Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology.
Edelaar P, Siepielski AM, Clobert J., Evolution 62(10), 2008
PMID: 18637835
Edelaar P, Siepielski AM, Clobert J., Evolution 62(10), 2008
PMID: 18637835
Homochrome Farbanpassung bei Oedipoda Larven
Ergene S., 1952
Ergene S., 1952
Dynamics of colour polymorphism in a changing environment: fire melanism and then what?
Karlsson M, Caesar S, Ahnesjo J, Forsman A., Oecologia 154(4), 2007
PMID: 17957385
Karlsson M, Caesar S, Ahnesjo J, Forsman A., Oecologia 154(4), 2007
PMID: 17957385
To quiver or to shiver: increased melanization benefits thermoregulation, but reduces warning signal efficacy in the wood tiger moth.
Hegna RH, Nokelainen O, Hegna JR, Mappes J., Proc. Biol. Sci. 280(1755), 2013
PMID: 23363631
Hegna RH, Nokelainen O, Hegna JR, Mappes J., Proc. Biol. Sci. 280(1755), 2013
PMID: 23363631
Some like it hot: Intra-population variation in behavioral thermoregulation in color-polymorphic pygmy grasshoppers
Forsman A., 2000
Forsman A., 2000
Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies
Kingsolver JG, Wiernasz DC., 1991
Kingsolver JG, Wiernasz DC., 1991
The effect of temperature and humidity on the formation of green pigment in Acrida bicolor (Thunb).
OKAY S., Arch. Int. Physiol. Biochim. 64(1), 1956
PMID: 13303512
OKAY S., Arch. Int. Physiol. Biochim. 64(1), 1956
PMID: 13303512
The bionomics of Schistocerca obscura (Fabr)
Duck LG., 1944
Duck LG., 1944
The effect of light on the dispersal of 'yellow' melanin pigments in the integument of the grasshopper Poecilocerus hieroglyphicus (Klug.).
Bushama FT., Experientia 25(3), 1969
PMID: 5781555
Bushama FT., Experientia 25(3), 1969
PMID: 5781555
Sergeev MG, Kopaneva LM, Rubtsov IA, Antipanova EM, Burgov AG, Vysotskaya LV., 1995
The phylogeny of the Orthoptera (Insecta) as deduced from mitogenomic gene sequences
Zhang HL, Huang Y, Lin LL, Wang XY, Zheng ZM., 2013
Zhang HL, Huang Y, Lin LL, Wang XY, Zheng ZM., 2013
Environmental control of body-color polyphenism in the American grasshopper, Schistocerca americana.
Tanaka S., Ann. Entomol. Soc. Am. 97(2), 2004
PMID: IND43629651
Tanaka S., Ann. Entomol. Soc. Am. 97(2), 2004
PMID: IND43629651
Untersuchungen über Farbanpassung und Farbwechsel bei Acrida turrita
Ergene S., 1950
Ergene S., 1950
Phenotypic plasticity in insects: the effects of substrate color on the coloration of two ground-hopper species.
Hochkirch A, Deppermann J, Groning J., Evol. Dev. 10(3), 2008
PMID: 18460096
Hochkirch A, Deppermann J, Groning J., Evol. Dev. 10(3), 2008
PMID: 18460096
Mountain weather and climate: A general overview and a focus on climatic change in the Alps
Beniston M., 2006
Beniston M., 2006
Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies
Ellers J, Boggs CL., 2004
Ellers J, Boggs CL., 2004
Insect thermoregulation
May ML., 1979
May ML., 1979
Life-history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change.
Willott SJ, Hassall M., Functional ecology. 12(2), 1998
PMID: IND21076991
Willott SJ, Hassall M., Functional ecology. 12(2), 1998
PMID: IND21076991
Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects.
Sugumaran M., Pigment Cell Res. 15(1), 2002
PMID: 11837452
Sugumaran M., Pigment Cell Res. 15(1), 2002
PMID: 11837452
Costly melanin ornaments: the importance of taxon?
Stoehr AM., 2006
Stoehr AM., 2006
Responses of disparate phenotypically-plastic, melanin-based traits to common cues: limits to the benefits of adaptive plasticity?
Stoehr AM., 2010
Stoehr AM., 2010
The costs of being dark: the genetic basis of melanism and its association with fitness-related traits in the sand cricket.
Roff DA, Fairbairn DJ., J. Evol. Biol. 26(7), 2013
PMID: 23675858
Roff DA, Fairbairn DJ., J. Evol. Biol. 26(7), 2013
PMID: 23675858
AUTHOR UNKNOWN, 0
Organelle evolution: what's in a name?
Keeling PJ, Archibald JM., Curr. Biol. 18(8), 2008
PMID: 18430636
Keeling PJ, Archibald JM., Curr. Biol. 18(8), 2008
PMID: 18430636
Microtubules in the epidermal cells of Carausius morosus (Br) - Their pattern and relation to pigment migration
Berthold G., 1980
Berthold G., 1980
The adaptiveness of animal colors
Burtt EH., 1981
Burtt EH., 1981
Conclusions beyond support: overconfident estimates in mixed models.
Schielzeth H, Forstmeier W., Behav. Ecol. 20(2), 2008
PMID: 19461866
Schielzeth H, Forstmeier W., Behav. Ecol. 20(2), 2008
PMID: 19461866
Core R., 2014
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Re-examination of the roles of environmental factors in the control of body-color polyphenism in solitarious nymphs of the desert locust Schistocerca gregaria with special reference to substrate color and humidity.
Tanaka S, Harano K, Nishide Y., J. Insect Physiol. 58(1), 2011
PMID: 22075390
Tanaka S, Harano K, Nishide Y., J. Insect Physiol. 58(1), 2011
PMID: 22075390
On the responses of the african migratory locust to different types of background
Hertz M, Imms AD., 1937
Hertz M, Imms AD., 1937
Environmental effects on color variation and ommochromes in Chorthippus biguttulus L. (Orthoptera, Acrididae)
Helfert B., 1978
Helfert B., 1978
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 26293296
PubMed | Europe PMC
Suchen in