A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata

Knief U, Schielzeth H, Ellegren H, Kempenaers B, Forstmeier W (2015)
Molecular Ecology 24(15): 3846-3859.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Knief, Ulrich; Schielzeth, HolgerUniBi ; Ellegren, Hans; Kempenaers, Bart; Forstmeier, Wolfgang
Abstract / Bemerkung
The two parental alleles at a specific locus are usually inherited with equal probability to the offspring. However, at least three processes can lead to an apparent departure from fair segregation: early viability selection, biased gene conversion and various kinds of segregation distortion. Here, we conduct a genome-wide scan for transmission distortion in a captive population of zebra finches (Taeniopygia guttata) using 1302 single-nucleotide polymorphisms (SNPs) followed by confirmatory analyses on independent samples from the same population. In the initial genome-wide scan, we found significant distortion at three linked loci on chromosome Tgu2 and we were able to replicate this finding in each of two follow-up data sets [overall transmission ratio = 0.567 (95% CI = 0.536–0.600), based on 1101 informative meioses]. Although the driving allele was preferentially transmitted by both heterozygous females [ratio = 0.560 (95% CI = 0.519–0.603)] and heterozygous males [ratio = 0.575 (95% CI = 0.531–0.623)], we could rule out postzygotic viability selection and biased gene conversion as possible mechanisms. Early postzygotic viability selection is unlikely, because it would result in eggs with no visible embryo and hence no opportunity for genotyping, and we confirmed that both females and males heterozygous for the driving allele did not produce a larger proportion of such eggs than homozygous birds. Biased gene conversion is expected to be rather localized, while we could trace transmission distortion in haplotypes of several megabases in a recombination desert. Thus, we here report the rare case of a prezygotically active transmission distorter operating equally effectively in female and male meioses.
Stichworte
meiotic drive; genic drive; selfish DNA; segregation distortion
Erscheinungsjahr
2015
Zeitschriftentitel
Molecular Ecology
Band
24
Ausgabe
15
Seite(n)
3846-3859
ISSN
0962-1083
Page URI
https://pub.uni-bielefeld.de/record/2768436

Zitieren

Knief U, Schielzeth H, Ellegren H, Kempenaers B, Forstmeier W. A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata. Molecular Ecology. 2015;24(15):3846-3859.
Knief, U., Schielzeth, H., Ellegren, H., Kempenaers, B., & Forstmeier, W. (2015). A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata. Molecular Ecology, 24(15), 3846-3859. doi:10.1111/mec.13281
Knief, U., Schielzeth, H., Ellegren, H., Kempenaers, B., and Forstmeier, W. (2015). A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata. Molecular Ecology 24, 3846-3859.
Knief, U., et al., 2015. A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata. Molecular Ecology, 24(15), p 3846-3859.
U. Knief, et al., “A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata”, Molecular Ecology, vol. 24, 2015, pp. 3846-3859.
Knief, U., Schielzeth, H., Ellegren, H., Kempenaers, B., Forstmeier, W.: A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata. Molecular Ecology. 24, 3846-3859 (2015).
Knief, Ulrich, Schielzeth, Holger, Ellegren, Hans, Kempenaers, Bart, and Forstmeier, Wolfgang. “A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata”. Molecular Ecology 24.15 (2015): 3846-3859.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success.
Knief U, Forstmeier W, Pei Y, Ihle M, Wang D, Martin K, Opatová P, Albrechtová J, Wittig M, Franke A, Albrecht T, Kempenaers B., Nat Ecol Evol 1(8), 2017
PMID: 29046576
The Ecology and Evolutionary Dynamics of Meiotic Drive.
Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM, Manser A, Montchamp-Moreau C, Petrosyan VG, Pomiankowski A, Presgraves DC, Safronova LD, Sutter A, Unckless RL, Verspoor RL, Wedell N, Wilkinson GS, Price TAR., Trends Ecol Evol 31(4), 2016
PMID: 26920473
Fitness consequences of polymorphic inversions in the zebra finch genome.
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W., Genome Biol 17(1), 2016
PMID: 27687629

56 References

Daten bereitgestellt von Europe PubMed Central.

Evidence of subtle departures from Mendelian segregation in a wild lesser kestrel (Falco naumanni) population.
Aparicio JM, Ortego J, Calabuig G, Cordero PJ., Heredity (Edinb) 105(2), 2009
PMID: 19953119
The evolution of cooperation.
Axelrod R, Hamilton WD., Science 211(4489), 1981
PMID: 7466396
Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds.
Axelsson E, Albrechtsen A, van AP, Li L, Megens HJ, Vereijken AL, Crooijmans RP, Groenen MA, Ellegren H, Willerslev E, Nielsen R., Heredity (Edinb) 105(3), 2010
PMID: 20104236
The recombination landscape of the zebra finch Taeniopygia guttata genome.
Backstrom N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Ost T, Schneider M, Kempenaers B, Ellegren H., Genome Res. 20(4), 2010
PMID: 20357052
The Zebra Finch genome and avian genomics in the wild
Balakrishnan, EMU 110(), 2010

AUTHOR UNKNOWN, 0
Evolutionary ecology of the prezygotic stage.
Bernasconi G, Ashman TL, Birkhead TR, Bishop JD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, Taylor D, Till-Bottraud I, Ward PI, Zeh DW, Hellriegel B., Science 303(5660), 2004
PMID: 14963320

Burnham, 1962

Burt, 2006

AUTHOR UNKNOWN, 0
Chromosomal drive and the evolution of meiotic nondisjunction and trisomy in humans
Day, Proceedings of the National Academy of Sciences, USA 95(), 1998
Biased clustered substitutions in the human genome: the footprints of male-driven biased gene conversion.
Dreszer TR, Wall GD, Haussler D, Pollard KS., Genome Res. 17(10), 2007
PMID: 17785536
Biased gene conversion and the evolution of mammalian genomic landscapes.
Duret L, Galtier N., Annu Rev Genomics Hum Genet 10(), 2009
PMID: 19630562
The genomic landscape of species divergence in Ficedula flycatchers.
Ellegren H, Smeds L, Burri R, Olason PI, Backstrom N, Kawakami T, Kunstner A, Makinen H, Nadachowska-Brzyska K, Qvarnstrom A, Uebbing S, Wolf JB., Nature 491(7426), 2012
PMID: 23103876
Highly parallel SNP genotyping.
Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS., Cold Spring Harb. Symp. Quant. Biol. 68(), 2003
PMID: 15338605
Maternal effects influence the sexual behavior of sons and daughters in the zebra finch.
Forstmeier W, Coltman DW, Birkhead TR., Evolution 58(11), 2004
PMID: 15612299
Development of polymorphic microsatellite markers for the zebra finch (Taeniopygia guttata)
FORSTMEIER W, SCHIELZETH H, SCHNEIDER M, KEMPENAERS B., Mol. Ecol. Notes 7(6), 2007
PMID: IND43974441

Foulkes, 2009
Transcriptome-wide investigation of genomic imprinting in chicken.
Fresard L, Leroux S, Servin B, Gourichon D, Dehais P, Cristobal MS, Marsaud N, Vignoles F, Bed'hom B, Coville JL, Hormozdiari F, Beaumont C, Zerjal T, Vignal A, Morisson M, Lagarrigue S, Pitel F., Nucleic Acids Res. 42(6), 2014
PMID: 24452801

AUTHOR UNKNOWN, 0
The Zebra Finch: the ultimate Australian supermodel
Griffith, EMU 110(), 2010
Dysfunctional sperm production in Drosophila melanogaster males homozygous for segregation distorter elements
Hartl, Proceedings of the National Academy of Sciences, USA 63(), 1969
The centromere paradox: stable inheritance with rapidly evolving DNA.
Henikoff S, Ahmad K, Malik HS., Science 293(5532), 2001
PMID: 11498581
Quantifying realized inbreeding in wild and captive animal populations.
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W., Heredity (Edinb) 114(4), 2015
PMID: 25585923
Sex-specific differences in meiotic chromosome segregation revealed by dicentric bridge resolution in mice.
Koehler KE, Millie EA, Cherry JP, Burgoyne PS, Evans EP, Hunt PA, Hassold TJ., Genetics 162(3), 2002
PMID: 12454080

AUTHOR UNKNOWN, 0
Transmission ratio distortion in mice.
Lyon MF., Annu. Rev. Genet. 37(), 2003
PMID: 14616067
Segregation distorters.
Lyttle TW., Annu. Rev. Genet. 25(), 1991
PMID: 1812815
Versuche über Pflanzen-Hybriden
Mendel, Verhandlungen des naturforschenden Vereins in Brünn 4(), 1865
Evaluating the evidence for transmission distortion in human pedigrees.
Meyer WK, Arbeithuber B, Ober C, Ebner T, Tiemann-Boege I, Hudson RR, Przeworski M., Genetics 191(1), 2012
PMID: 22377632
Nonrandom segregation during meiosis: the unfairness of females.
Pardo-Manuel de Villena F, Sapienza C., Mamm. Genome 12(5), 2001
PMID: 11331939
The molecular evolutionary basis of species formation.
Presgraves DC., Nat. Rev. Genet. 11(3), 2010
PMID: 20051985

AUTHOR UNKNOWN, 0
Simple means to improve the interpretability of regression coefficients
Schielzeth, Methods in Ecology and Evolution 1(), 2010
Data from: QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait
Schielzeth, Dryad Digital Repository (), 2011
QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait.
Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W., Evolution 66(1), 2011
PMID: 22220861
From genes to games: cooperation and cyclic dominance in meiotic drive.
Traulsen A, Reed FA., J. Theor. Biol. 299(), 2011
PMID: 21600218
Homologous pairing and the role of pairing centers in meiosis.
Tsai JH, McKee BD., J. Cell. Sci. 124(Pt 12), 2011
PMID: 21625006
On the evolutionary stability of Mendelian segregation.
Ubeda F, Haig D., Genetics 170(3), 2005
PMID: 15911587
Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings
Visscher, Plos Genetics 2(), 2006
The genome of a songbird.
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TA, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Volker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AF, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK., Nature 464(7289), 2010
PMID: 20360741
Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition.
Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H., Genome Biol. 15(12), 2014
PMID: 25496599
Male-driven biased gene conversion governs the evolution of base composition in human alu repeats.
Webster MT, Smith NG, Hultin-Rosenberg L, Arndt PF, Ellegren H., Mol. Biol. Evol. 22(6), 2005
PMID: 15772377
Non-crossover gene conversions show strong GC bias and unexpected clustering in humans
Williams, eLife 4(), 2015

Zann, 1996
Evidence for extensive transmission distortion in the human genome.
Zollner S, Wen X, Hanchard NA, Herbert MA, Ober C, Pritchard JK., Am. J. Hum. Genet. 74(1), 2003
PMID: 14681832

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26087713
PubMed | Europe PMC

Suchen in

Google Scholar