Variability among individuals is generated at the gene expression level

Peck LS, Thorne MAS, Hoffman J, Morley SA, Clark MS (2015)
Ecology 96(7): 2004-2014.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Peck, Lloyd S.; Thorne, Michael A. S.; Hoffman, JosephUniBi ; Morley, Simon A.; Clark, Melody S.
Abstract / Bemerkung
Selection acts on individuals, specifically on their differences. To understand adaptation and responses to change therefore requires knowledge of how variation is generated and distributed across traits. Variation occurs on different biological scales, from genetic through physiological to morphological, yet it is unclear which of these carries the most variability. For example, if individual variation is mainly generated by differences in gene expression, variability should decrease progressively from coding genes to morphological traits, whereas if post-translational and epigenetic effects increase variation, the opposite should occur. To test these predictions, we compared levels of variation among individuals in various measures of gene expression, physiology (including activity), and morphology in two abundant and geographically widespread Antarctic molluscs, the clam Laternula elliptica and the limpet Nacella concinna. Direct comparisons among traits as diverse as heat shock protein QPCR assays, whole transcription profiles, respiration rates, burying rate, shell length, and ash-free dry mass were made possible through the novel application of an established metric, the Wentworth Scale. In principle, this approach could be extended to analyses of populations, communities, or even entire ecosystems. We found consistently greater variation in gene expression than morphology, with physiological measures falling in between. This suggests that variability is generated at the gene expression level. These findings have important implications for refining current biological models and predictions of how biodiversity may respond to climate change.
Stichworte
resistance; resilience; phenotypic plasticity; metabolism; evolution; AFLP; climate change
Erscheinungsjahr
2015
Zeitschriftentitel
Ecology
Band
96
Ausgabe
7
Seite(n)
2004-2014
ISSN
0012-9658
Page URI
https://pub.uni-bielefeld.de/record/2766874

Zitieren

Peck LS, Thorne MAS, Hoffman J, Morley SA, Clark MS. Variability among individuals is generated at the gene expression level. Ecology. 2015;96(7):2004-2014.
Peck, L. S., Thorne, M. A. S., Hoffman, J., Morley, S. A., & Clark, M. S. (2015). Variability among individuals is generated at the gene expression level. Ecology, 96(7), 2004-2014. doi:10.1890/14-0726.1
Peck, Lloyd S., Thorne, Michael A. S., Hoffman, Joseph, Morley, Simon A., and Clark, Melody S. 2015. “Variability among individuals is generated at the gene expression level”. Ecology 96 (7): 2004-2014.
Peck, L. S., Thorne, M. A. S., Hoffman, J., Morley, S. A., and Clark, M. S. (2015). Variability among individuals is generated at the gene expression level. Ecology 96, 2004-2014.
Peck, L.S., et al., 2015. Variability among individuals is generated at the gene expression level. Ecology, 96(7), p 2004-2014.
L.S. Peck, et al., “Variability among individuals is generated at the gene expression level”, Ecology, vol. 96, 2015, pp. 2004-2014.
Peck, L.S., Thorne, M.A.S., Hoffman, J., Morley, S.A., Clark, M.S.: Variability among individuals is generated at the gene expression level. Ecology. 96, 2004-2014 (2015).
Peck, Lloyd S., Thorne, Michael A. S., Hoffman, Joseph, Morley, Simon A., and Clark, Melody S. “Variability among individuals is generated at the gene expression level”. Ecology 96.7 (2015): 2004-2014.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Epigenetic Mechanisms and Microbiota as a Toolbox for Plant Phenotypic Adjustment to Environment.
Vannier N, Mony C, Bittebière AK, Vandenkoornhuyse P., Front Plant Sci 6(), 2015
PMID: 26779191

58 References

Daten bereitgestellt von Europe PubMed Central.

The evolutionary landscape of alternative splicing in vertebrate species.
Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter C, Watt S, Colak R, Kim T, Misquitta-Ali CM, Wilson MD, Kim PM, Odom DT, Frey BJ, Blencowe BJ., Science 338(6114), 2012
PMID: 23258890

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Antarctic marine molluscs do have an HSP70 heat shock response.
Clark MS, Fraser KP, Peck LS., Cell Stress Chaperones 13(1), 2008
PMID: 18347940
Stochastic gene expression in a single cell.
Elowitz MB, Levine AJ, Siggia ED, Swain PS., Science 297(5584), 2002
PMID: 12183631

AUTHOR UNKNOWN, 0
FoxK1 splice variants show developmental stage-specific plasticity of expression with temperature in the tiger pufferfish.
Fernandes JM, MacKenzie MG, Kinghorn JR, Johnston IA., J. Exp. Biol. 210(Pt 19), 2007
PMID: 17873000
Rapid evolution of flowering time by an annual plant in response to a climate fluctuation.
Franks SJ, Sim S, Weis AE., Proc. Natl. Acad. Sci. U.S.A. 104(4), 2007
PMID: 17220273
Iceberg scour and shell damage in the Antarctic bivalve Laternula elliptica.
Harper EM, Clark MS, Hoffman JI, Philipp EE, Peck LS, Morley SA., PLoS ONE 7(9), 2012
PMID: 23029484
Climate change and evolutionary adaptation.
Hoffmann AA, Sgro CM., Nature 470(7335), 2011
PMID: 21350480
Detecting genetic responses to environmental change.
Hoffmann AA, Willi Y., Nat. Rev. Genet. 9(6), 2008
PMID: 18463665

AUTHOR UNKNOWN, 0
Environment and plasticity of myogenesis in teleost fish.
Johnston IA., J. Exp. Biol. 209(Pt 12), 2006
PMID: 16731802
Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates.
Kingsolver JG, Ragland GJ, Shlichta JG., Evolution 58(7), 2004
PMID: 15341154

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field.
Korves TM, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR, Purugganan MD, Schmitt J., Am. Nat. 169(5), 2007
PMID: 17427127

AUTHOR UNKNOWN, 0
Inter-individual variation in expression: a missing link in biomarker biology?
Little PF, Williams RB, Wilkins MR., Trends Biotechnol. 27(1), 2008
PMID: 19010558
Superspreading and the effect of individual variation on disease emergence.
Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM., Nature 438(7066), 2005
PMID: 16292310

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal nacellid limpets to climate change.
Morley SA, Martin SM, Day RW, Ericson J, Lai CH, Lamare M, Tan KS, Thorne MA, Peck LS., PLoS ONE 7(12), 2012
PMID: 23285194

AUTHOR UNKNOWN, 0
Variation in gene expression within and among natural populations.
Oleksiak MF, Churchill GA, Crawford DL., Nat. Genet. 32(2), 2002
PMID: 12219088

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Organisms and responses to environmental change.
Peck LS., Mar Genomics 4(4), 2011
PMID: 22118635

AUTHOR UNKNOWN, 0
Animal temperature limits and ecological relevance: effects of size, activity and rates of change
Peck LS, Clark MS, Morley SA, Massey A, Rossetti H., Functional ecology. 23(2), 2009
PMID: IND44176095
Acclimation and thermal tolerance in Antarctic marine ectotherms.
Peck LS, Morley SA, Richard J, Clark MS., J. Exp. Biol. 217(Pt 1), 2014
PMID: 24353200

AUTHOR UNKNOWN, 0
Genome-wide polymorphisms show unexpected targets of natural selection.
Pespeni MH, Garfield DA, Manier MK, Palumbi SR., Proc. Biol. Sci. 279(1732), 2011
PMID: 21993504
Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view.
Portner HO, Peck L, Somero G., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362(1488), 2007
PMID: 17553776

AUTHOR UNKNOWN, 0
Population proteomics: quantitative variation within and among populations in cardiac protein expression.
Rees BB, Andacht T, Skripnikova E, Crawford DL., Mol. Biol. Evol. 28(3), 2010
PMID: 21109588
Gene regulation at the single-cell level.
Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB., Science 307(5717), 2005
PMID: 15790856
Designing experiments to understand the variability in biochemical reaction networks.
Ruess J, Milias-Argeitis A, Lygeros J., J R Soc Interface 10(88), 2013
PMID: 23985733
Global quantification of mammalian gene expression control.
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M., Nature 473(7347), 2011
PMID: 21593866
Increased cytokines response in patients with tuberculosis complicated with chronic obstructive pulmonary disease.
Tang S, Cui H, Yao L, Hao X, Shen Y, Fan L, Sun H, Zhang Z, Huang JA., PLoS ONE 8(4), 2013
PMID: 23626814

AUTHOR UNKNOWN, 0
A rapid shift in a classic clinal pattern in Drosophila reflecting climate change.
Umina PA, Weeks AR, Kearney MR, McKechnie SW, Hoffmann AA., Science 308(5722), 2005
PMID: 15860627
Variation in tissue-specific gene expression among natural populations.
Whitehead A, Crawford DL., Genome Biol. 6(2), 2005
PMID: 15693942

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26378322
PubMed | Europe PMC

Suchen in

Google Scholar