Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution

Lenz U, Kluth S, Baake E, Wakolbinger A (2015)
Theoretical Population Biology 103: 27-37.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lenz, Ute; Kluth, SandraUniBi; Baake, EllenUniBi; Wakolbinger, Anton
Abstract / Bemerkung
In a (two-type) Wright-Fisher diffusion with directional selection and two-way mutation, let x denote today's frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today's population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning. (C) 2015 Elsevier Inc. All rights reserved.
Stichworte
Common ancestor type distribution; Ancestral selection graph; Lookdown; graph; Pruning; Wright-Fisher diffusion with selection and mutation
Erscheinungsjahr
2015
Zeitschriftentitel
Theoretical Population Biology
Band
103
Seite(n)
27-37
ISSN
0040-5809
Page URI
https://pub.uni-bielefeld.de/record/2766816

Zitieren

Lenz U, Kluth S, Baake E, Wakolbinger A. Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution. Theoretical Population Biology. 2015;103:27-37.
Lenz, U., Kluth, S., Baake, E., & Wakolbinger, A. (2015). Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution. Theoretical Population Biology, 103, 27-37. doi:10.1016/j.tpb.2015.01.005
Lenz, Ute, Kluth, Sandra, Baake, Ellen, and Wakolbinger, Anton. 2015. “Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution”. Theoretical Population Biology 103: 27-37.
Lenz, U., Kluth, S., Baake, E., and Wakolbinger, A. (2015). Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution. Theoretical Population Biology 103, 27-37.
Lenz, U., et al., 2015. Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution. Theoretical Population Biology, 103, p 27-37.
U. Lenz, et al., “Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution”, Theoretical Population Biology, vol. 103, 2015, pp. 27-37.
Lenz, U., Kluth, S., Baake, E., Wakolbinger, A.: Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution. Theoretical Population Biology. 103, 27-37 (2015).
Lenz, Ute, Kluth, Sandra, Baake, Ellen, and Wakolbinger, Anton. “Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution”. Theoretical Population Biology 103 (2015): 27-37.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

21 References

Daten bereitgestellt von Europe PubMed Central.

Branching-coalescing particle systems
Athreya, Probab. Theory Related Fields 131(), 2005

AUTHOR UNKNOWN, 0
Coalescence in a random background
Barton, Ann. Appl. Probab. 14(), 2004
Particle representations for measure-valued population models
Donnelly, Ann. Probab. 27(), 1999
Genealogical processes for Fleming–Viot models with selection and recombination
Donnelly, Ann. Appl. Probab. 9(), 1999

Durrett, 2008

Etheridge, 2011
A coalescent dual process in a Moran model with genic selection.
Etheridge AM, Griffiths RC., Theor Popul Biol 75(4), 2009
PMID: 19341750

Ewens, 2004
The common ancestor at a nonneutral locus
Fearnhead, J. Appl. Probab. 39(), 2002
The common ancestor process revisited.
Kluth S, Hustedt T, Baake E., Bull. Math. Biol. 75(11), 2013
PMID: 24045892
Ancestral Processes with Selection
Krone SM, Neuhauser C., Theor Popul Biol 51(3), 1997
PMID: 9245777
The genealogy of samples in models with selection.
Neuhauser C, Krone SM., Genetics 145(2), 1997
PMID: 9071604
The ancestral selection graph under strong directional selection.
Pokalyuk C, Pfaffelhuber P., Theor Popul Biol 87(), 2012
PMID: 23064041
Stationary states and their stability of the stepping stone model involving mutation and selection
Shiga, Probab. Theory Related Fields 73(), 1986
Simulation of selected genealogies.
Slade PF., Theor Popul Biol 57(1), 2000
PMID: 10708627
The common ancestor process for a Wright–Fisher diffusion
Taylor, Electron. J. Probab. 12(), 2007

Wakeley, 2009
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25891326
PubMed | Europe PMC

Suchen in

Google Scholar