Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate

Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais J-C, Wendisch VF (2015)
Applied Microbiology and Biotechnology 99(23): 10163-10176.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Leßmeier, LennartUniBi; Pfeifenschneider, JohannesUniBi; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F.UniBi
Applied Microbiology and Biotechnology
Page URI


Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais J-C, Wendisch VF. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology. 2015;99(23):10163-10176.
Leßmeier, L., Pfeifenschneider, J., Carnicer, M., Heux, S., Portais, J. - C., & Wendisch, V. F. (2015). Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology, 99(23), 10163-10176. doi:10.1007/s00253-015-6906-5
Leßmeier, L., Pfeifenschneider, J., Carnicer, M., Heux, S., Portais, J. - C., and Wendisch, V. F. (2015). Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology 99, 10163-10176.
Leßmeier, L., et al., 2015. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology, 99(23), p 10163-10176.
L. Leßmeier, et al., “Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate”, Applied Microbiology and Biotechnology, vol. 99, 2015, pp. 10163-10176.
Leßmeier, L., Pfeifenschneider, J., Carnicer, M., Heux, S., Portais, J.-C., Wendisch, V.F.: Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology. 99, 10163-10176 (2015).
Leßmeier, Lennart, Pfeifenschneider, Johannes, Carnicer, Marc, Heux, Stephanie, Portais, Jean-Charles, and Wendisch, Volker F. “Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate”. Applied Microbiology and Biotechnology 99.23 (2015): 10163-10176.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biological conversion of methane to chemicals and fuels: technical challenges and issues.
Hwang IY, Nguyen AD, Nguyen TT, Nguyen LT, Lee OK, Lee EY., Appl Microbiol Biotechnol 102(7), 2018
PMID: 29492639
Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Methanol-essential growth of Escherichia coli.
Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA., Nat Commun 9(1), 2018
PMID: 29666370
Enhancing catalytic stability and cadaverine tolerance by whole-cell immobilization and the addition of cell protectant during cadaverine production.
Wei G, Ma W, Zhang A, Cao X, Shen J, Li Y, Chen K, Ouyang P., Appl Microbiol Biotechnol 102(18), 2018
PMID: 29998412
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Current advance in bioconversion of methanol to chemicals.
Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M., Biotechnol Biofuels 11(), 2018
PMID: 30258494
Quantification of Lipids: Model, Reality, and Compromise.
Khoury S, Canlet C, Lacroix MZ, Berdeaux O, Jouhet J, Bertrand-Michel J., Biomolecules 8(4), 2018
PMID: 30558107
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA, Papoutsakis ET., Metab Eng 39(), 2017
PMID: 27815193
Exploring eukaryotic formate metabolisms to enhance microbial growth and lipid accumulation.
Liu Z, Oyetunde T, Hollinshead WD, Hermanns A, Tang YJ, Liao W, Liu Y., Biotechnol Biofuels 10(), 2017
PMID: 28149324
6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28213736
Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae.
Dai Z, Gu H, Zhang S, Xin F, Zhang W, Dong W, Ma J, Jia H, Jiang M., Bioresour Technol 245(pt b), 2017
PMID: 28554521
Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.
Zhang B, Yu M, Zhou Y, Li Y, Ye BC., Microb Cell Fact 16(1), 2017
PMID: 28938890
Recent advances in amino acid production by microbial cells.
Hirasawa T, Shimizu H., Curr Opin Biotechnol 42(), 2016
PMID: 27151315
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.
Lubitz D, Jorge JM, Pérez-García F, Taniguchi H, Wendisch VF., Appl Microbiol Biotechnol 100(19), 2016
PMID: 27350619
Scaffoldless engineered enzyme assembly for enhanced methanol utilization.
Price JV, Chen L, Whitaker WB, Papoutsakis E, Chen W., Proc Natl Acad Sci U S A 113(45), 2016
PMID: 27791059

86 References

Daten bereitgestellt von Europe PubMed Central.

Site-directed mutagenesis and X-ray crystallography of the PQQ-containing quinoprotein methanol dehydrogenase and its electron acceptor, cytochrome c(L).
Afolabi PR, Mohammed F, Amaratunga K, Majekodunmi O, Dales SL, Gill R, Thompson D, Cooper JB, Wood SP, Goodwin PM, Anthony C., Biochemistry 40(33), 2001
PMID: 11502173
Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties.
Ando M, Yoshimoto T, Ogushi S, Rikitake K, Shibata S, Tsuru D., J. Biochem. 85(5), 1979
PMID: 571868

The structure and mechanism of methanol dehydrogenase.
Anthony C, Williams P., Biochim. Biophys. Acta 1647(1-2), 2003
PMID: 12686102
Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus.
Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J., Eur. J. Biochem. 244(2), 1997
PMID: 9119008
Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp.
Arfman N, Van Beeumen J, De Vries GE, Harder W, Dijkhuizen L., J. Biol. Chem. 266(6), 1991
PMID: 1995643
Ethanol catabolism in Corynebacterium glutamicum.
Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 15(4), 2007
PMID: 17693703

Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
Buschke N, Becker J, Schafer R, Kiefer P, Biedendieck R, Wittmann C., Biotechnol J 8(5), 2013
PMID: 23447448
Modularity of methylotrophy, revisited.
Chistoserdova L., Environ. Microbiol. 13(10), 2011
PMID: 21443740

L, Microbiology 146(Pt 1), 2000
The expanding world of methylotrophic metabolism.
Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME., Annu. Rev. Microbiol. 63(), 2009
PMID: 19514844
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl. Microbiol. Biotechnol. 99(8), 2015
PMID: 25761623
Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza.
Gutheil WG, Kasimoglu E, Nicholson PC., Biochem. Biophys. Res. Commun. 238(3), 1997
PMID: 9333139
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424

HJ, J Mol Catal B Enzym 8(1–3), 2000
The mechanism of the condensation of formaldehyde with tetrahydrofolic acid.
Kallen RG, Jencks WP., J. Biol. Chem. 241(24), 1966
PMID: 5954363
The physiological role of the ribulose monophosphate pathway in bacteria and archaea.
Kato N, Yurimoto H, Thauer RK., Biosci. Biotechnol. Biochem. 70(1), 2006
PMID: 16428816
C(1) compounds as auxiliary substrate for engineered Pseudomonas putida S12.
Koopman FW, de Winde JH, Ruijssenaars HJ., Appl. Microbiol. Biotechnol. 83(4), 2009
PMID: 19280184

IsoCor: correcting MS data in isotope labeling experiments.
Millard P, Letisse F, Sokol S, Portais JC., Bioinformatics 28(9), 2012
PMID: 22419781
Sampling of intracellular metabolites for stationary and non-stationary (13)C metabolic flux analysis in Escherichia coli.
Millard P, Massou S, Wittmann C, Portais JC, Letisse F., Anal. Biochem. 465(), 2014
PMID: 25102204
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539

Formaldehyde fixation contributes to detoxification for growth of a nonmethylotroph, Burkholderia cepacia TM1, on vanillic acid.
Mitsui R, Kusano Y, Yurimoto H, Sakai Y, Kato N, Tanaka M., Appl. Environ. Microbiol. 69(10), 2003
PMID: 14532071
Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.
Muller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T., Appl. Microbiol. Biotechnol. 99(2), 2014
PMID: 25431011
Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
Muller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA., Proteomics 14(6), 2014
PMID: 24452867
Engineering Escherichia coli for methanol conversion.
Muller JEN, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais JC, Vorholt JA., Metab. Eng. 28(), 2015
PMID: 25596507
Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains.
Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF., Microb Biotechnol 8(2), 2015
PMID: 25644214
Bacillithiol is an antioxidant thiol produced in Bacilli.
Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, Hamilton CJ, Claiborne A, Helmann JD, Fahey RC., Nat. Chem. Biol. 5(9), 2009
PMID: 19578333

C, Comptes Rendus Chimie 11(4), 2008
Methylobacterium extorquens: methylotrophy and biotechnological applications.
Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA., Appl. Microbiol. Biotechnol. 99(2), 2014
PMID: 25432674
Beyond oil and gas: the methanol economy.
Olah GA., Angew. Chem. Int. Ed. Engl. 44(18), 2005
PMID: 15800867
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Gotker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J. Biotechnol. 192 Pt B(), 2014
PMID: 24486440
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1.
Pomper BK, Vorholt JA, Chistoserdova L, Lidstrom ME, Thauer RK., Eur. J. Biochem. 261(2), 1999
PMID: 10215859
Is the ribulose monophosphate pathway widely distributed in bacteria?
Reizer J, Reizer A, Saier MH Jr., Microbiology (Reading, Engl.) 143 ( Pt 8)(), 1997
PMID: 9274005
Alcohol oxidase and catalase in peroxisomes of methanol-grown Candida boidinii.
Roggenkamp R, Sahm H, Hinkelmann W, Wagner F., Eur. J. Biochem. 59(1), 1975
PMID: 1204609

J, 2001
Biotechnological production of polyamines by bacteria: recent achievements and future perspectives.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 91(1), 2011
PMID: 21552989
Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase.
Seibold G, Dempf S, Schreiner J, Eikmanns BJ., Microbiology (Reading, Engl.) 153(Pt 4), 2007
PMID: 17379737
Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone.
Shen YQ, Bonnot F, Imsand EM, RoseFigura JM, Sjolander K, Klinman JP., Biochemistry 51(11), 2012
PMID: 22324760
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Stolzenberger J, Lindner SN, Wendisch VF., Microbiology (Reading, Engl.) 159(Pt 8), 2013
PMID: 23760818
Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase.
Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A., Appl. Microbiol. Biotechnol. 82(1), 2008
PMID: 18989633
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Glutathione-independent formaldehyde dehydrogenase from Pseudomons putida: survey of functional groups with special regard for cysteine residues.
Tsuru D, Oda N, Matsuo Y, Ishikawa S, Ito K, Yoshimoto T., Biosci. Biotechnol. Biochem. 61(8), 1997
PMID: 9301119
Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.
Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET., Curr. Opin. Biotechnol. 33(), 2015
PMID: 25796071
The 1.6A X-ray structure of the unusual c-type cytochrome, cytochrome cL, from the methylotrophic bacterium Methylobacterium extorquens.
Williams P, Coates L, Mohammed F, Gill R, Erskine P, Bourgeois D, Wood SP, Anthony C, Cooper JB., J. Mol. Biol. 357(1), 2006
PMID: 16414073
C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
Witthoff S, Muhlroth A, Marienhagen J, Bott M., Appl. Environ. Microbiol. 79(22), 2013
PMID: 24014532
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
Witthoff S, Schmitz K, Niedenfuhr S, Noh K, Noack S, Bott M, Marienhagen J., Appl. Environ. Microbiol. 81(6), 2015
PMID: 25595770
Atmospheric deposition of methanol over the Atlantic Ocean.
Yang M, Nightingale PD, Beale R, Liss PS, Blomquist B, Fairall C., Proc. Natl. Acad. Sci. U.S.A. 110(50), 2013
PMID: 24277830
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 26276544
PubMed | Europe PMC

Suchen in

Google Scholar