Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes

Sischka A, Galla L, Meyer A, Spiering A, Knust S, Mayer M, Hall AR, Beyer A, Reimann P, Gölzhäuser A, Anselmetti D (2015)
The Analyst 140(14): 4843-4847.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model.
Erscheinungsjahr
2015
Zeitschriftentitel
The Analyst
Band
140
Ausgabe
14
Seite(n)
4843-4847
ISSN
0003-2654
Page URI
https://pub.uni-bielefeld.de/record/2764381

Zitieren

Sischka A, Galla L, Meyer A, et al. Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes. The Analyst. 2015;140(14):4843-4847.
Sischka, A., Galla, L., Meyer, A., Spiering, A., Knust, S., Mayer, M., Hall, A. R., et al. (2015). Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes. The Analyst, 140(14), 4843-4847. doi:10.1039/c4an02319f
Sischka, Andy, Galla, Lukas, Meyer, Andreas, Spiering, André, Knust, Sebastian, Mayer, Michael, Hall, Adam R., et al. 2015. “Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes”. The Analyst 140 (14): 4843-4847.
Sischka, A., Galla, L., Meyer, A., Spiering, A., Knust, S., Mayer, M., Hall, A. R., Beyer, A., Reimann, P., Gölzhäuser, A., et al. (2015). Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes. The Analyst 140, 4843-4847.
Sischka, A., et al., 2015. Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes. The Analyst, 140(14), p 4843-4847.
A. Sischka, et al., “Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes”, The Analyst, vol. 140, 2015, pp. 4843-4847.
Sischka, A., Galla, L., Meyer, A., Spiering, A., Knust, S., Mayer, M., Hall, A.R., Beyer, A., Reimann, P., Gölzhäuser, A., Anselmetti, D.: Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes. The Analyst. 140, 4843-4847 (2015).
Sischka, Andy, Galla, Lukas, Meyer, Andreas, Spiering, André, Knust, Sebastian, Mayer, Michael, Hall, Adam R., Beyer, André, Reimann, Peter, Gölzhäuser, Armin, and Anselmetti, Dario. “Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes”. The Analyst 140.14 (2015): 4843-4847.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Bioinspired, nanoscale approaches in contemporary bioanalytics (Review).
Michelle Grandin H, Guillaume-Gentil O, Zambelli T, Mayer M, Houghtaling J, Palivan CG, Textor M, Höök F., Biointerphases 13(4), 2018
PMID: 30049219
Nanopore Sensing.
Shi W, Friedman AK, Baker LA., Anal Chem 89(1), 2017
PMID: 28105845
Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review.
Song Y, Zhang J, Li D., Micromachines (Basel) 8(7), 2017
PMID: 30400393

26 References

Daten bereitgestellt von Europe PubMed Central.

Sequence-specific detection of individual DNA strands using engineered nanopores.
Howorka S, Cheley S, Bayley H., Nat. Biotechnol. 19(7), 2001
PMID: 11433274

Nakane, J. Phys.: Condens. Matter 15(), 2003
Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.
Miles BN, Ivanov AP, Wilson KA, Dogan F, Japrung D, Edel JB., Chem Soc Rev 42(1), 2012
PMID: 22990878
Electrophoresis of a polyelectrolyte through a nanopore.
Ghosal S., Phys Rev E Stat Nonlin Soft Matter Phys 74(4 Pt 1), 2006
PMID: 17155090
Electro-osmotic screening of the DNA charge in a nanopore.
Luan B, Aksimentiev A., Phys Rev E Stat Nonlin Soft Matter Phys 78(2 Pt 1), 2008
PMID: 18850870
Controlling DNA translocation through gate modulation of nanopore wall surface charges.
He Y, Tsutsui M, Fan C, Taniguchi M, Kawai T., ACS Nano 5(7), 2011
PMID: 21662982
Hydrodynamic slip on DNA observed by optical tweezers-controlled translocation experiments with solid-state and lipid-coated nanopores.
Galla L, Meyer AJ, Spiering A, Sischka A, Mayer M, Hall AR, Reimann P, Anselmetti D., Nano Lett. 14(7), 2014
PMID: 24935198

Luan, J. Phys.: Condens. Matter 22(), 2010
Tether forces in DNA electrophoresis.
Keyser UF, van Dorp S, Lemay SG., Chem Soc Rev 39(3), 2009
PMID: 20179816

van, Nat. Phys. 5(), 2009
Direct force measurements on double-stranded RNA in solid-state nanopores.
van den Hout M, Vilfan ID, Hage S, Dekker NH., Nano Lett. 10(2), 2010
PMID: 20050676
Controlling protein translocation through nanopores with bio-inspired fluid walls.
Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC, Li J, Yang J, Mayer M., Nat Nanotechnol 6(4), 2011
PMID: 21336266

Keyser, Nat. Phys. 2(), 2006
Nanopore translocation dynamics of a single DNA-bound protein.
Spiering A, Getfert S, Sischka A, Reimann P, Anselmetti D., Nano Lett. 11(7), 2011
PMID: 21667921
Measurement of the position-dependent electrophoretic force on DNA in a glass nanocapillary.
Bulushev RD, Steinbock LJ, Khlybov S, Steinbock JF, Keyser UF, Radenovic A., Nano Lett. 14(11), 2014
PMID: 25343616

Turchanin, Prog. Surf. Sci. 87(), 2012
A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.
Angelova P, Vieker H, Weber NE, Matei D, Reimer O, Meier I, Kurasch S, Biskupek J, Lorbach D, Wunderlich K, Chen L, Terfort A, Klapper M, Mullen K, Kaiser U, Golzhauser A, Turchanin A., ACS Nano 7(8), 2013
PMID: 23802686
Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection.
Yang J, Ferranti DC, Stern LA, Sanford CA, Huang J, Ren Z, Qin LC, Hall AR., Nanotechnology 22(28), 2011
PMID: 21659692

Bocquet, RCS Soft Matter 3(), 2007
Origin of current blockades in nanopore translocation experiments.
Kesselheim S, Muller W, Holm C., Phys. Rev. Lett. 112(1), 2014
PMID: 24483933

Spiering, 2012
Video-based and interference-free axial force detection and analysis for optical tweezers.
Knust S, Spiering A, Vieker H, Beyer A, Golzhauser A, Tonsing K, Sischka A, Anselmetti D., Rev Sci Instrum 83(10), 2012
PMID: 23126771
Reluctance of a neutral nanoparticle to enter a charged pore.
Getfert S, Tows T, Reimann P., Phys Rev E Stat Nonlin Soft Matter Phys 88(5), 2013
PMID: 24329299

Masliyah, 2006
Computing the field in proteins and channels.
Eisenberg RS., J. Membr. Biol. 150(1), 1996
PMID: 8699474
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25768647
PubMed | Europe PMC

Suchen in

Google Scholar