Fast responses of metabolites in Vicia faba L. to moderate NaCl stress

Geilfus C-M, Niehaus K, Goedde V, Hasler M, Zoerb C, Gorzolka K, Jezek M, Senbayram M, Ludwig-Mueller J, Muehling KH (2015)
Plant Physiology and Biochemistry 92: 19-29.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Geilfus, Christoph-Martin; Niehaus, KarstenUniBi; Goedde, Victoria; Hasler, Mario; Zoerb, Christian; Gorzolka, Karin; Jezek, Mareike; Senbayram, Mehmet; Ludwig-Mueller, Jutta; Muehling, Karl H.
Abstract / Bemerkung
Salt stress impairs global agricultural crop production by reducing vegetative growth and yield. Despite this importance, a number of gaps exist in our knowledge about very early metabolic responses that ensue minutes after plants experience salt stress. Surprisingly, this early phase remains almost as a black box. Therefore, systematic studies focussing on very early plant physiological responses to salt stress (in this case NaCl) may enhance our understanding on strategies to develop crop plants with a better performance under saline conditions. In the present study, hydroponically grown Vicia faba L. plants were exposed to 90 min of NaCl stress, whereby every 15 min samples were taken for analyzing short-term physiologic responses. Gas chromatography-mass spectrometry-based metabolite profiles were analysed by calculating a principal component analysis followed by multiple contrast tests. Follow-up experiments were run to analyze downstream effects of the metabolic changes on the physiological level. The novelty of this study is the demonstration of complex stress-induced metabolic changes at the very beginning of a moderate salt stress in V. faba, information that are very scant for this early stage. This study reports for the first that the proline analogue trans-4-hydroxy-L-proline, known to inhibit cell elongation, was increasingly synthesized after NaCl-stress initiation. Leaf metabolites associated with the generation or scavenging of reactive oxygen species (ROS) were affected in leaves that showed a synchronized increase in ROS formation. A reduced glutamine synthetase activity indicated that disturbances in the nitrogen assimilation occur earlier than it was previously thought under salt stress. (C) 2015 Elsevier Masson SAS. All rights reserved.
Stichworte
Spermidine; OxyBURST Green H2HFF; Vicia faba L.; trans-4-hydroxy-L-proline; NaCl; Short-term salt stress; Reactive oxygen species
Erscheinungsjahr
2015
Zeitschriftentitel
Plant Physiology and Biochemistry
Band
92
Seite(n)
19-29
ISSN
0981-9428
Page URI
https://pub.uni-bielefeld.de/record/2762730

Zitieren

Geilfus C-M, Niehaus K, Goedde V, et al. Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. Plant Physiology and Biochemistry. 2015;92:19-29.
Geilfus, C. - M., Niehaus, K., Goedde, V., Hasler, M., Zoerb, C., Gorzolka, K., Jezek, M., et al. (2015). Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. Plant Physiology and Biochemistry, 92, 19-29. doi:10.1016/j.plaphy.2015.04.008
Geilfus, Christoph-Martin, Niehaus, Karsten, Goedde, Victoria, Hasler, Mario, Zoerb, Christian, Gorzolka, Karin, Jezek, Mareike, Senbayram, Mehmet, Ludwig-Mueller, Jutta, and Muehling, Karl H. 2015. “Fast responses of metabolites in Vicia faba L. to moderate NaCl stress”. Plant Physiology and Biochemistry 92: 19-29.
Geilfus, C. - M., Niehaus, K., Goedde, V., Hasler, M., Zoerb, C., Gorzolka, K., Jezek, M., Senbayram, M., Ludwig-Mueller, J., and Muehling, K. H. (2015). Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. Plant Physiology and Biochemistry 92, 19-29.
Geilfus, C.-M., et al., 2015. Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. Plant Physiology and Biochemistry, 92, p 19-29.
C.-M. Geilfus, et al., “Fast responses of metabolites in Vicia faba L. to moderate NaCl stress”, Plant Physiology and Biochemistry, vol. 92, 2015, pp. 19-29.
Geilfus, C.-M., Niehaus, K., Goedde, V., Hasler, M., Zoerb, C., Gorzolka, K., Jezek, M., Senbayram, M., Ludwig-Mueller, J., Muehling, K.H.: Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. Plant Physiology and Biochemistry. 92, 19-29 (2015).
Geilfus, Christoph-Martin, Niehaus, Karsten, Goedde, Victoria, Hasler, Mario, Zoerb, Christian, Gorzolka, Karin, Jezek, Mareike, Senbayram, Mehmet, Ludwig-Mueller, Jutta, and Muehling, Karl H. “Fast responses of metabolites in Vicia faba L. to moderate NaCl stress”. Plant Physiology and Biochemistry 92 (2015): 19-29.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ion-dependent metabolic responses of Vicia faba L. to salt stress.
Richter JA, Behr JH, Erban A, Kopka J, Zörb C., Plant Cell Environ 42(1), 2019
PMID: 29940081
Chloride: from Nutrient to Toxicant.
Geilfus CM., Plant Cell Physiol 59(5), 2018
PMID: 29660029

87 References

Daten bereitgestellt von Europe PubMed Central.

Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco.
Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM., Plant Physiol. 143(4), 2007
PMID: 17293434
Regulation of metabolomics in Atriplex halimus growth under salt and drought stress
Alla, Plant Growth Regul. 67(), 2012
4-Hydroxyl-L-proline in plant glycoproteins
Ashford, Trends Biochem. Sci. 5(), 1980
Control of glycerol biosynthesis under high salt stress in Arabidopsis
Bahieldin, Funct. Plant Biol. 41(1), 2013
Salt stress increases ferredoxin-dependent glutamate synthase activity and protein level in the leaves of tomato
Berteli, Physiol. Plant 93(), 1995
ROS homeostasis in halophytes in the context of salinity stress tolerance
Bose, J. Exp. Bot. 65(5), 2013
Abiotic stress and metabolomics
Bowne, Annu. Plant Rev. 43(), 2011
Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert.
Brosche M, Vinocur B, Alatalo ER, Lamminmaki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjarvi J., Genome Biol. 6(12), 2005
PMID: 16356264
Differential metabolite profiles and salinity tolerance between two genetically related brown-seeded and yellow-seeded Brassica carinata lines
Canam T, Bianyun Yu , David S. Wishart , Harold Steppuhn , Igor Sinelnikov , Jennifer Holowachuk , Jianguo Xia , Kevin C. Falk , Larry Grenkow , Margaret Y. Gruber , Min Yu , Ramanarayan Krishnamurthy , Rupasri Mandal , Souhaila Bouatra , Tim J. Dumonceaux , Xiang Li ., Plant Sci. 198(), 2013
PMID: IND500602697
Determination of the pore size of cell walls of living plants
Carpita, Science 205(), 1979
Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.
Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC., Funct. Integr. Genomics 7(2), 2006
PMID: 17136344
Dimethylthiourea, a hydrogen peroxide trap, partially prevents stress effects and ascorbate peroxidase increase in spermidine-treated maize roots
De, Plant, Cell. Environ. 24(), 2001
Nitrogen uptake and metabolism in Populus x canescens as affected by salinity.
Dluzniewska P, Gessler A, Dietrich H, Schnitzler JP, Teuber M, Rennenberg H., New Phytol. 173(2), 2007
PMID: 17204075
Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress.
Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R., BMC Genomics 11(), 2010
PMID: 21092124
Metabolite profiling for plant functional genomics.
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L., Nat. Biotechnol. 18(11), 2000
PMID: 11062433
Improving crop salt tolerance
Flowers, J. Exp. Bot. 55(396), 2004
Breeding for salinity resistance in crop plants—where next?
Flowers, Aust. J. Plant Physiol. 22(), 1995
Salt tolerance of maize (Zea mays L.): the role of sodium exclusion
Fortmeier, Plant Cell. Environ. 18(), 1995
A reassessment of the function of the so-called compatible solutes in the halophytic plumbaginaceae Limonium latifolium.
Gagneul D, Ainouche A, Duhaze C, Lugan R, Larher FR, Bouchereau A., Plant Physiol. 144(3), 2007
PMID: 17468212
Real-Time Imaging of Leaf Apoplastic pH Dynamics in Response to NaCl Stress.
Geilfus CM, Muhling KH., Front Plant Sci 2(), 2011
PMID: 22639578
Differential transcript expression of wall-loosening candidates in leaves of maize cultivars differing in salt resistance
Geilfus, J. Plant Growth Regul. 30(), 2011
Down regulation of ZmEXPB6 is correlated with salt mediated growth reduction in leaves of Zea mays L
Geilfus, J. Biol. Chem. (), 2015

Hartung, 1999
PLANT CELLULAR AND MOLECULAR RESPONSES TO HIGH SALINITY.
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ., Annu. Rev. Plant Physiol. Plant Mol. Biol. 51(), 2000
PMID: 15012199
Multiple contrast tests in the presence of heteroscedasticity.
Hasler M, Hothorn LA., Biom J 50(5), 2008
PMID: 18932141
A simple sequentially rejective multiple test procedure
Holm, Scand. J. Stat. 6(), 1979
Invertase activity limits grain yield of maize under salt stress
Hütsch, J. Plant Nutr. Soil Sci. 177(2), 2014
Progress in manipulating ascorbic acid biosynthesis and accumulation in plants.
Ishikawa Takahiro, Dowdle John, Smirnoff Nicholas., Physiol Plant 126(3), 2006
PMID: IND43783145
ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis.
Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R, Smith JA, Harberd NP., EMBO J. 31(22), 2012
PMID: 23064146
Metabolic fingerprinting of salt-stressed tomatoes.
Johnson HE, Broadhurst D, Goodacre R, Smith AR., Phytochemistry 62(6), 2003
PMID: 12590119
Role of auxin-induced reactive oxygen species in root gravitropism.
Joo JH, Bae YS, Lee JS., Plant Physiol. 126(3), 2001
PMID: 11457956
Gene expression profiles during the initial phase of salt stress in rice.
Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ., Plant Cell 13(4), 2001
PMID: 11283343
A central role of abscisic acid in stress-regulated carbohydrate metabolism.
Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak C., PLoS ONE 3(12), 2008
PMID: 19081841
Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment
Kim, J. Exp. Bot. 58(), 2007
GMD@CSB.DB: the Golm Metabolome Database.
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D., Bioinformatics 21(8), 2004
PMID: 15613389
The effect of hyper-osmotic salinity on protein pattern and enzyme activities of halophytes
Koyro, Funct. Plant Biol. 40(), 2013
Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks
Krasensky, J. Exp. Bot. 63(), 2012
The biosynthesis of cis-4-hydroxy-L-proline in sandal (Santalum album L.).
Kuttan R, Radhakrishnan AN., Biochem. J. 117(5), 1970
PMID: 5451903
Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte.
Lugan R, Niogret MF, Leport L, Guegan JP, Larher FR, Savoure A, Kopka J, Bouchereau A., Plant J. 64(2), 2010
PMID: 21070405
Crop salt tolerance – current assessment
Maas, J. I.R.R. Drain. Div.-ASCE 103(), 1977
Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R., Plant Cell Environ. 33(4), 2009
PMID: 19712065
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
ROS signaling: the new wave?
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F., Trends Plant Sci. 16(6), 2011
PMID: 21482172
Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs.
Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S., Proc. Natl. Acad. Sci. U.S.A. 104(52), 2007
PMID: 18079291
Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots.
Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S., Plant Cell 21(8), 2009
PMID: 19654264
Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance
Mühling, Plant Soil 253(1), 2003
Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses
Munns, Plant Cell. Environ. 16(), 1993
Comparative physiology of salt and water stress.
Munns R., Plant Cell Environ. 25(2), 2002
PMID: 11841667
Mechanisms of salinity tolerance.
Munns R, Tester M., Annu Rev Plant Biol 59(), 2008
PMID: 18444910
Approaches to increasing the salt tolerance of wheat and other cereals
Munns, J. Exp. Bot. 57(5), 2006
Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene.
Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M., Nat. Biotechnol. 30(4), 2012
PMID: 22407351
Transcript expression of Mg-chelatase and H+-ATPase isogenes in Vicia faba leaves as influenced by root and foliar magnesium supply
Neuhaus, Plant Soil 368(), 2013
Glutamine synthetase of pea leaves. I. Purification, stabilization, and pH optima.
O'Neal D, Joy KW., Arch. Biochem. Biophys. 159(1), 1973
PMID: 4150338
Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum
Omielan, Genome 34(6), 1991
Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture
Parida, J. Plant Physiol. 161(), 2004
Inhibition of nitrate and nitrate reductase activity by salinity stress in Sorghum vulgare
Rao, Phytochemistry 29(), 1990
Metabolic contribution to salt stress in two maize hybrids with contrasting resistance.
Richter JA, Erban A, Kopka J, Zorb C., Plant Sci. 233(), 2015
PMID: 25711818
Cellular organization of glycerolipid metabolism
Roughan, Annu. Rev. Plant Physiol. 33(), 1982
Plant metabolomics reveals conserved and divergent metabolic responses to salinity
Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J., Physiol Plant 132(2), 2008
PMID: IND43999347
Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus.
Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Kramer U, Kopka J, Udvardi MK., Plant J. 53(6), 2007
PMID: 18047558
Analysis of trials with complex treatment structure using multiple contrast tests
Schaarschmidt, Hortscience 44(1), 2009
Apoplastic Na+ in Vicia faba leaves rises after short-term salt stress and is remediated by silicon
Shahzad, J. Agron. Crop Sci. 199(), 2013
Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309
Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, van Dongen JT, Kopka J., Plant Sci. 182(), 2012
PMID: IND601139296
The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants.
Valderrama R, Corpas FJ, Carreras A, Gomez-Rodriguez MV, Chaki M, Pedrajas JR, Fernandez-Ocana A, Del Rio LA, Barroso JB., Plant Cell Environ. 29(7), 2006
PMID: 17080966
Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance
Widodo, J. Exp. Bot. 60(), 2009
Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination.
Witzel K, Weidner A, Surabhi GK, Varshney RK, Kunze G, Buck-Sorlin GH, Borner A, Mock HP., Plant Cell Environ. 33(2), 2009
PMID: 19906151
Tissue metabolic responses to salt stress in wild and cultivated barley.
Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G., PLoS ONE 8(1), 2013
PMID: 23383190
Developing salt-tolerant crop plants: challenges and opportunities.
Yamaguchi T, Blumwald E., Trends Plant Sci. 10(12), 2005
PMID: 16280254
Effect of salt stress on ammonium assimilation enzymes of the roots of rice (Oryza sativa) cultivars differing in salinity resistance
Zhou, Acta Bot. Sin. 46(), 2004
Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture
Zörb, J. Agric. Food Chem. 54(), 2006
Proteomic changes in maize roots after short-term adjustment to saline growth conditions.
Zorb C, Schmitt S, Muhling KH., Proteomics 10(24), 2010
PMID: 21136597
Metabolomic responses in grain, ear, and straw of winter wheat under increasing sulfur treatment
Zörb, J. Plant Nutr. Soil Sci. 176(), 2013
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25900421
PubMed | Europe PMC

Suchen in

Google Scholar