Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting

Dalaloyan A, Qi M, Ruthstein S, Vega S, Godt A, Feintuch A, Goldfarb D (2015)
Physical Chemistry Chemical Physics 17(28): 18464-18476.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dalaloyan, Arina; Qi, MianUniBi ; Ruthstein, Sharon; Vega, Shimon; Godt, AdelheidUniBi; Feintuch, Akiva; Goldfarb, Daniella
Abstract / Bemerkung
Gd(III) complexes have emerged as spin labels for distance determination in biomolecules through double-electron-electron resonance (DEER) measurements at high fields. For data analysis, the standard approach developed for a pair of weakly coupled spins with S = 1/2 was applied, ignoring the actual properties of Gd(III) ions, i.e. S = 7/2 and ZFS (zero field splitting) not equal 0. The present study reports on a careful investigation on the consequences of this approach, together with the range of distances accessible by DEER with Gd(III) complexes as spin labels. The experiments were performed on a series of specifically designed and synthesized Gd-rulers (Gd-PyMTA-spacer-Gd-PyMTA) covering Gd-Gd distances of 2-8 nm. These were dissolved in D2O-glycerol-d(8) (0.03-0.10 mM solutions) which is the solvent used for the corresponding experiments on biomolecules. Q- and W-band DEER measurements, followed by data analysis using the standard data analysis approach, used for S = 1/2 pairs gave the distance-distribution curves, of which the absolute maxima agreed very well with the expected distances. However, in the case of the short distances of 2.1 and 2.9 nm, the distance distributions revealed additional peaks. These are a consequence of neglecting the pseudo-secular term in the dipolar Hamiltonian during the data analysis, as is outlined in a theoretical treatment. At distances of 3.4 nm and above, disregarding the pseudo-secular term leads to a broadening of a maximum of 0.4 nm of the distance-distribution curves at half height. Overall, the distances of up to 8.3 nm were determined, and the long evolution time of 16 mu s at 10 K indicates that a distance of up to 9.4 nm can be accessed. A large distribution of the ZFS parameter, D, as is found for most Gd(III) complexes in a frozen solution, is crucial for the application of Gd(III) complexes as spin labels for distance determination via Gd(III)-Gd(III) DEER, especially for short distances. The larger ZFS of Gd-PyMTA, in comparison to that of Gd-DOTA, makes Gd-PyMTA a better label for short distances.
Erscheinungsjahr
2015
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
17
Ausgabe
28
Seite(n)
18464-18476
ISSN
1463-9076
Page URI
https://pub.uni-bielefeld.de/record/2762256

Zitieren

Dalaloyan A, Qi M, Ruthstein S, et al. Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics. 2015;17(28):18464-18476.
Dalaloyan, A., Qi, M., Ruthstein, S., Vega, S., Godt, A., Feintuch, A., & Goldfarb, D. (2015). Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics, 17(28), 18464-18476. doi:10.1039/c5cp02602d
Dalaloyan, Arina, Qi, Mian, Ruthstein, Sharon, Vega, Shimon, Godt, Adelheid, Feintuch, Akiva, and Goldfarb, Daniella. 2015. “Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting”. Physical Chemistry Chemical Physics 17 (28): 18464-18476.
Dalaloyan, A., Qi, M., Ruthstein, S., Vega, S., Godt, A., Feintuch, A., and Goldfarb, D. (2015). Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics 17, 18464-18476.
Dalaloyan, A., et al., 2015. Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics, 17(28), p 18464-18476.
A. Dalaloyan, et al., “Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting”, Physical Chemistry Chemical Physics, vol. 17, 2015, pp. 18464-18476.
Dalaloyan, A., Qi, M., Ruthstein, S., Vega, S., Godt, A., Feintuch, A., Goldfarb, D.: Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics. 17, 18464-18476 (2015).
Dalaloyan, Arina, Qi, Mian, Ruthstein, Sharon, Vega, Shimon, Godt, Adelheid, Feintuch, Akiva, and Goldfarb, Daniella. “Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting”. Physical Chemistry Chemical Physics 17.28 (2015): 18464-18476.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Gd(III)-Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination.
Azarkh M, Bieber A, Qi M, Fischer JWA, Yulikov M, Godt A, Drescher M., J Phys Chem Lett 10(7), 2019
PMID: 30864799
Exchange coupling and single molecule magnetism in redox-active tetraoxolene-bridged dilanthanide complexes.
Zhang P, Perfetti M, Kern M, Hallmen PP, Ungur L, Lenz S, Ringenberg MR, Frey W, Stoll H, Rauhut G, van Slageren J., Chem Sci 9(5), 2018
PMID: 29675167
Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes.
Clayton JA, Keller K, Qi M, Wegner J, Koch V, Hintz H, Godt A, Han S, Jeschke G, Sherwin MS, Yulikov M., Phys Chem Chem Phys 20(15), 2018
PMID: 29617015
Deep neural network processing of DEER data.
Worswick SG, Spencer JA, Jeschke G, Kuprov I., Sci Adv 4(8), 2018
PMID: 30151430
Small neutral Gd(iii) tags for distance measurements in proteins by double electron-electron resonance experiments.
Mahawaththa MC, Lee MD, Giannoulis A, Adams LA, Feintuch A, Swarbrick JD, Graham B, Nitsche C, Goldfarb D, Otting G., Phys Chem Chem Phys 20(36), 2018
PMID: 30183028
Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance.
Clayton JA, Qi M, Godt A, Goldfarb D, Han S, Sherwin MS., Phys Chem Chem Phys 19(7), 2017
PMID: 28139788
A Reactive, Rigid GdIII Labeling Tag for In-Cell EPR Distance Measurements in Proteins.
Yang Y, Yang F, Gong YJ, Chen JL, Goldfarb D, Su XC., Angew Chem Int Ed Engl 56(11), 2017
PMID: 28145030
Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization.
Kaushik M, Qi M, Godt A, Corzilius B., Angew Chem Int Ed Engl 56(15), 2017
PMID: 28319293
Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels.
Keller K, Mertens V, Qi M, Nalepa AI, Godt A, Savitsky A, Jeschke G, Yulikov M., Phys Chem Chem Phys 19(27), 2017
PMID: 28660955
Time domain simulation of Gd3+-Gd3+ distance measurements by EPR.
Manukovsky N, Feintuch A, Kuprov I, Goldfarb D., J Chem Phys 147(4), 2017
PMID: 28764344
Double-Arm Lanthanide Tags Deliver Narrow Gd3+ -Gd3+ Distance Distributions in Double Electron-Electron Resonance (DEER) Measurements.
Welegedara AP, Yang Y, Lee MD, Swarbrick JD, Huber T, Graham B, Goldfarb D, Otting G., Chemistry 23(48), 2017
PMID: 28691217
Generic tags for Mn(ii) and Gd(iii) spin labels for distance measurements in proteins.
Yang Y, Gong YJ, Litvinov A, Liu HK, Yang F, Su XC, Goldfarb D., Phys Chem Chem Phys 19(39), 2017
PMID: 28956044
Gd(III) complexes as paramagnetic tags: Evaluation of the spin delocalization over the nuclei of the ligand.
Collauto A, Feintuch A, Qi M, Godt A, Meade T, Goldfarb D., J Magn Reson 263(), 2016
PMID: 26802219
A Bis-Manganese(II)-DOTA Complex for Pulsed Dipolar Spectroscopy.
Demay-Drouhard P, Ching HY, Akhmetzyanov D, Guillot R, Tabares LC, Bertrand HC, Policar C., Chemphyschem 17(13), 2016
PMID: 27017296
Overcoming artificial broadening in Gd(3+)-Gd(3+) distance distributions arising from dipolar pseudo-secular terms in DEER experiments.
Cohen MR, Frydman V, Milko P, Iron MA, Abdelkader EH, Lee MD, Swarbrick JD, Raitsimring A, Otting G, Graham B, Feintuch A, Goldfarb D., Phys Chem Chem Phys 18(18), 2016
PMID: 27102158
RIDME distance measurements using Gd(iii) tags with a narrow central transition.
Collauto A, Frydman V, Lee MD, Abdelkader EH, Feintuch A, Swarbrick JD, Graham B, Otting G, Goldfarb D., Phys Chem Chem Phys 18(28), 2016
PMID: 27355583
EPR characterization of Mn(ii) complexes for distance determination with pulsed dipolar spectroscopy.
Keller K, Zalibera M, Qi M, Koch V, Wegner J, Hintz H, Godt A, Jeschke G, Savitsky A, Yulikov M., Phys Chem Chem Phys 18(36), 2016
PMID: 27711532
Averaging of nuclear modulation artefacts in RIDME experiments.
Keller K, Doll A, Qi M, Godt A, Jeschke G, Yulikov M., J Magn Reson 272(), 2016
PMID: 27684788
CIDME: Short distances measured with long chirp pulses.
Doll A, Qi M, Godt A, Jeschke G., J Magn Reson 273(), 2016
PMID: 27788378
Nanometric distance measurements between Mn(ii)DOTA centers.
Vincent Ching HY, Demay-Drouhard P, Bertrand HC, Policar C, Tabares LC, Un S., Phys Chem Chem Phys 17(36), 2015
PMID: 26287752
Gd(III)-Gd(III) distance measurements with chirp pump pulses.
Doll A, Qi M, Wili N, Pribitzer S, Godt A, Jeschke G., J Magn Reson 259(), 2015
PMID: 26340436
Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy.
Barthelmes D, Gränz M, Barthelmes K, Allen KN, Imperiali B, Prisner T, Schwalbe H., J Biomol NMR 63(3), 2015
PMID: 26341230
Protein conformation by EPR spectroscopy using gadolinium tags clicked to genetically encoded p-azido-L-phenylalanine.
Abdelkader EH, Feintuch A, Yao X, Adams LA, Aurelio L, Graham B, Goldfarb D, Otting G., Chem Commun (Camb) 51(88), 2015
PMID: 26391199
Mn(II) tags for DEER distance measurements in proteins via C-S attachment.
Martorana A, Yang Y, Zhao Y, Li QF, Su XC, Goldfarb D., Dalton Trans 44(48), 2015
PMID: 26575837

59 References

Daten bereitgestellt von Europe PubMed Central.


Jeschke, 2013
Long-range distance determinations in biomacromolecules by EPR spectroscopy.
Schiemann O, Prisner TF., Q. Rev. Biophys. 40(1), 2007
PMID: 17565764

Borbat, 2013

AUTHOR UNKNOWN, 2012
The determination of pair distance distributions by pulsed ESR using Tikhonov regularization.
Chiang YW, Borbat PP, Freed JH., J. Magn. Reson. 172(2), 2005
PMID: 15649755

Jeschke, Appl. Magn. Reson. 30(), 2006

Hubbell, Curr. Opin. Struct. Biol. 4(), 1994
Structural basis of the non-coding RNA RsmZ acting as a protein sponge.
Duss O, Michel E, Yulikov M, Schubert M, Jeschke G, Allain FH., Nature 509(7502), 2014
PMID: 24828038

Shelke, 2013
Spin labeling EPR.
Klare JP, Steinhoff HJ., Photosyn. Res. 102(2-3), 2009
PMID: 19728138
Spin-labeled biomolecules.
Stone TJ, Buckman T, Nordio PL, McConnell HM., Proc. Natl. Acad. Sci. U.S.A. 54(4), 1965
PMID: 5219813
High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies.
Polyhach Y, Bordignon E, Tschaggelar R, Gandra S, Godt A, Jeschke G., Phys Chem Chem Phys 14(30), 2012
PMID: 22751953
A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time.
Cruickshank PA, Bolton DR, Robertson DA, Hunter RI, Wylde RJ, Smith GM., Rev Sci Instrum 80(10), 2009
PMID: 19895049
HYSCORE and DEER with an upgraded 95GHz pulse EPR spectrometer.
Goldfarb D, Lipkin Y, Potapov A, Gorodetsky Y, Epel B, Raitsimring AM, Radoul M, Kaminker I., J. Magn. Reson. 194(1), 2008
PMID: 18571956
Spin pair geometry revealed by high-field DEER in the presence of conformational distributions.
Polyhach Y, Godt A, Bauer C, Jeschke G., J. Magn. Reson. 185(1), 2006
PMID: 17188008
Orientation selection in distance measurements between nitroxide spin labels at 94 GHz EPR with variable dual frequency irradiation.
Tkach I, Pornsuwan S, Hobartner C, Wachowius F, Sigurdsson ST, Baranova TY, Diederichsen U, Sicoli G, Bennati M., Phys Chem Chem Phys 15(10), 2013
PMID: 23381580

Yang, Biophys. J. 102(), 2012
Physiological-temperature distance measurement in nucleic acid using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy.
Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Rogozhnikova OY, Trukhin DV, Troitskaya TI, Tormyshev VM, Fedin MV, Pyshnyi DV, Bagryanskaya EG., J. Am. Chem. Soc. 136(28), 2014
PMID: 24963806
Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy.
Goldfarb D., Phys Chem Chem Phys 16(21), 2014
PMID: 24429839
Gd3+ complexes as potential spin labels for high field pulsed EPR distance measurements.
Raitsimring AM, Gunanathan C, Potapov A, Efremenko I, Martin JM, Milstein D, Goldfarb D., J. Am. Chem. Soc. 129(46), 2007
PMID: 17963387
Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers.
Song Y, Meade TJ, Astashkin AV, Klein EL, Enemark JH, Raitsimring A., J. Magn. Reson. 210(1), 2011
PMID: 21388847
Gadolinium tagging for high-precision measurements of 6 nm distances in protein assemblies by EPR.
Yagi H, Banerjee D, Graham B, Huber T, Goldfarb D, Otting G., J. Am. Chem. Soc. 133(27), 2011
PMID: 21661728
Nanometer-scale distance measurements in proteins using Gd3+ spin labeling.
Potapov A, Yagi H, Huber T, Jergic S, Dixon NE, Otting G, Goldfarb D., J. Am. Chem. Soc. 132(26), 2010
PMID: 20536233
Determining the oligomeric structure of proteorhodopsin by Gd3+ -based pulsed dipolar spectroscopy of multiple distances.
Edwards DT, Huber T, Hussain S, Stone KM, Kinnebrew M, Kaminker I, Matalon E, Sherwin MS, Goldfarb D, Han S., Structure 22(11), 2014
PMID: 25438671
W-Band pulse EPR distance measurements in peptides using Gd(3+)-dipicolinic acid derivatives as spin labels.
Gordon-Grossman M, Kaminker I, Gofman Y, Shai Y, Goldfarb D., Phys Chem Chem Phys 13(22), 2011
PMID: 21552622
Gadolinium(III) spin labels for high-sensitivity distance measurements in transmembrane helices.
Matalon E, Huber T, Hagelueken G, Graham B, Frydman V, Feintuch A, Otting G, Goldfarb D., Angew. Chem. Int. Ed. Engl. 52(45), 2013
PMID: 24106050
Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd(3+)-DTPA chelate complexes.
Yulikov M, Lueders P, Warsi MF, Chechik V, Jeschke G., Phys Chem Chem Phys 14(30), 2012
PMID: 22743649
Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling.
Martorana A, Bellapadrona G, Feintuch A, Di Gregorio E, Aime S, Goldfarb D., J. Am. Chem. Soc. 136(38), 2014
PMID: 25163412
Gd(III)-PyMTA label is suitable for in-cell EPR.
Qi M, Gross A, Jeschke G, Godt A, Drescher M., J. Am. Chem. Soc. 136(43), 2014
PMID: 25325832
Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy.
Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF., Angew. Chem. Int. Ed. Engl. 50(22), 2011
PMID: 21506223
Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR.
Azarkh M, Okle O, Singh V, Seemann IT, Hartig JS, Dietrich DR, Drescher M., Chembiochem 12(13), 2011
PMID: 21726034
Intracellular conformations of human telomeric quadruplexes studied by electron paramagnetic resonance spectroscopy.
Azarkh M, Singh V, Okle O, Dietrich DR, Hartig JS, Drescher M., Chemphyschem 13(6), 2012
PMID: 22396158
Sensitivity enhancement by population transfer in Gd(III) spin labels.
Doll A, Qi M, Pribitzer S, Wili N, Yulikov M, Godt A, Jeschke G., Phys Chem Chem Phys 17(11), 2015
PMID: 25697259
RIDME Spectroscopy with Gd(III) Centers.
Razzaghi S, Qi M, Nalepa AI, Godt A, Jeschke G, Savitsky A, Yulikov M., J Phys Chem Lett 5(22), 2014
PMID: 26276479

Lueders, J. Phys. Chem. Lett. 2(), 2011
Spectroscopic selection of distance measurements in a protein dimer with mixed nitroxide and Gd3+ spin labels.
Kaminker I, Yagi H, Huber T, Feintuch A, Otting G, Goldfarb D., Phys Chem Chem Phys 14(13), 2012
PMID: 22362220
Distance measurements on orthogonally spin-labeled membrane spanning WALP23 polypeptides.
Lueders P, Jager H, Hemminga MA, Jeschke G, Yulikov M., J Phys Chem B 117(7), 2013
PMID: 23373560
W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity.
Kaminker I, Tkach I, Manukovsky N, Huber T, Yagi H, Otting G, Bennati M, Goldfarb D., J. Magn. Reson. 227(), 2012
PMID: 23314001
Orthogonal spin labeling and Gd(III)-nitroxide distance measurements on bacteriophage T4-lysozyme.
Garbuio L, Bordignon E, Brooks EK, Hubbell WL, Jeschke G, Yulikov M., J Phys Chem B 117(11), 2013
PMID: 23442004

Gunanathan, Cryst. Growth Des. 10(), 2010

Goldfarb, 2013
Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures.
Raitsimring A, Dalaloyan A, Collauto A, Feintuch A, Meade T, Goldfarb D., J. Magn. Reson. 248(), 2014
PMID: 25442776

Raitsimring, Appl. Magn. Reson. 28(), 2005
Dead-time free measurement of dipole-dipole interactions between electron spins.
Pannier M, Veit S, Godt A, Jeschke G, Spiess HW., J. Magn. Reson. 142(2), 2000
PMID: 10648151
Flexibility of shape-persistent molecular building blocks composed of p-phenylene and ethynylene units.
Jeschke G, Sajid M, Schulte M, Ramezanian N, Volkov A, Zimmermann H, Godt A., J. Am. Chem. Soc. 132(29), 2010
PMID: 20590116

Low, 1960
Variable temperature and EPR frequency study of two aqueous Gd(III) complexes with unprecedented sharp lines.
Borel A, Kang H, Gateau C, Mazzanti M, Clarkson RB, Belford RL., J Phys Chem A 110(45), 2006
PMID: 17091946
Three-spin correlations in double electron-electron resonance.
Jeschke G, Sajid M, Schulte M, Godt A., Phys Chem Chem Phys 11(31), 2009
PMID: 19639133
W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.
Reginsson GW, Hunter RI, Cruickshank PA, Bolton DR, Sigurdsson ST, Smith GM, Schiemann O., J. Magn. Reson. 216(), 2012
PMID: 22386646
Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR.
Kunjir NC, Reginsson GW, Schiemann O, Sigurdsson ST., Phys Chem Chem Phys 15(45), 2013
PMID: 24135783
How flexible are poly(para-phenyleneethynylene)s?
Godt A, Schulte M, Zimmermann H, Jeschke G., Angew. Chem. Int. Ed. Engl. 45(45), 2006
PMID: 17051574
Optimization of pulsed DEER measurements for Gd-based labels: choice of operational frequencies, pulse durations and positions, and temperature.
Raitsimring A, Astashkin AV, Enemark JH, Kaminker I, Goldfarb D, Walter ED, Song Y, Meade TJ., Appl Magn Reson 44(6), 2013
PMID: 23687407
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26108866
PubMed | Europe PMC

Suchen in

Google Scholar