Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example

Taniguchi H, Wendisch VF (2015)
Frontiers in Microbiology 6: 740.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production.
Stichworte
Corynebacterium; sigH ribA; RNA polymerase sigma factor; FMN production; riboflavin
Erscheinungsjahr
2015
Zeitschriftentitel
Frontiers in Microbiology
Band
6
Art.-Nr.
740
ISSN
1664-302X
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2760597

Zitieren

Taniguchi H, Wendisch VF. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Frontiers in Microbiology. 2015;6: 740.
Taniguchi, H., & Wendisch, V. F. (2015). Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Frontiers in Microbiology, 6, 740. doi:10.3389/fmicb.2015.00740
Taniguchi, Hironori, and Wendisch, Volker F. 2015. “Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example”. Frontiers in Microbiology 6: 740.
Taniguchi, H., and Wendisch, V. F. (2015). Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Frontiers in Microbiology 6:740.
Taniguchi, H., & Wendisch, V.F., 2015. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Frontiers in Microbiology, 6: 740.
H. Taniguchi and V.F. Wendisch, “Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example”, Frontiers in Microbiology, vol. 6, 2015, : 740.
Taniguchi, H., Wendisch, V.F.: Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Frontiers in Microbiology. 6, : 740 (2015).
Taniguchi, Hironori, and Wendisch, Volker F. “Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example”. Frontiers in Microbiology 6 (2015): 740.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:32Z
MD5 Prüfsumme
95ef1c0e392c20763594187b171deb2d


8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Overlapping riboflavin supply pathways in bacteria.
García-Angulo VA., Crit Rev Microbiol 43(2), 2017
PMID: 27822970
Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum.
Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M., AMB Express 7(1), 2017
PMID: 28651382
Physiological roles of sigma factor SigD in Corynebacterium glutamicum.
Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF., BMC Microbiol 17(1), 2017
PMID: 28701150
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Biotechnology of riboflavin.
Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C., Appl Microbiol Biotechnol 100(5), 2016
PMID: 26758294
The small 6C RNA of Corynebacterium glutamicum is involved in the SOS response.
Pahlke J, Dostálová H, Holátko J, Degner U, Bott M, Pátek M, Polen T., RNA Biol 13(9), 2016
PMID: 27362471

81 References

Daten bereitgestellt von Europe PubMed Central.

Flavin adenine dinucleotide and flavin mononucleotide metabolism in rat liver--the occurrence of FAD pyrophosphatase and FMN phosphohydrolase in isolated mitochondria.
Barile M, Brizio C, De Virgilio C, Delfine S, Quagliariello E, Passarella S., Eur. J. Biochem. 249(3), 1997
PMID: 9395326
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ., Appl. Environ. Microbiol. 73(7), 2007
PMID: 17293513
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
Buckle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ., Appl. Microbiol. Biotechnol. 98(1), 2013
PMID: 24169948

Burkovski A.., 2008
Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states.
Cho BK, Kim D, Knight EM, Zengler K, Palsson BO., BMC Biol. 12(), 2014
PMID: 24461193
Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni.
Crossley RA, Gaskin DJ, Holmes K, Mulholland F, Wells JM, Kelly DJ, van Vliet AH, Walton NJ., Appl. Environ. Microbiol. 73(24), 2007
PMID: 17965203
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Junemann S, Kahlke T, Kleindt CK, Kuster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Puhler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358

Eggeling L., Bott M.., 2005
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl. Microbiol. Biotechnol. 99(8), 2015
PMID: 25761623
Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation.
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H., Appl. Environ. Microbiol. 74(16), 2008
PMID: 18567683
Interaction of cobalt and iron in riboflavine production of Candida guilliermondii.
Enari T., Kauppinen V.., 1961
Bacterial sigma factors: a historical, structural, and genomic perspective.
Feklistov A, Sharon BD, Darst SA, Gross CA., Annu. Rev. Microbiol. 68(), 2014
PMID: 25002089
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes.
Holatko J, Silar R, Rabatinova A, Sanderova H, Halada P, Nesvera J, Krasny L, Patek M., Appl. Microbiol. Biotechnol. 96(2), 2012
PMID: 22885668
Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum.
Hwang JH, Hwang GH, Cho JY., J. Microbiol. Biotechnol. 18(4), 2008
PMID: 18467864
Elucidation of genes relevant to the microaerobic growth of Corynebacterium glutamicum.
Ikeda M, Baba M, Tsukamoto N, Komatsu T, Mitsuhashi S, Takeno S., Biosci. Biotechnol. Biochem. 73(12), 2009
PMID: 19966452
Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum.
Jensen JV, Wendisch VF., Microb. Cell Fact. 12(), 2013
PMID: 23806148
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Riboflavin production by Ashbya gossypii.
Kato T, Park EY., Biotechnol. Lett. 34(4), 2011
PMID: 22187081
Alternative sigma factors and their roles in bacterial virulence.
Kazmierczak MJ, Wiedmann M, Boor KJ., Microbiol. Mol. Biol. Rev. 69(4), 2005
PMID: 16339734
Functional analysis of sigH expression in Corynebacterium glutamicum.
Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 331(4), 2005
PMID: 15883048
The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress.
Kim TH, Park JS, Kim HJ, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 337(3), 2005
PMID: 16212936

AUTHOR UNKNOWN, 1984
Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes.
Koizumi S, Yonetani Y, Maruyama A, Teshiba S., Appl. Microbiol. Biotechnol. 53(6), 2000
PMID: 10919325
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Krause FS, Blombach B, Eikmanns BJ., Appl. Environ. Microbiol. 76(24), 2010
PMID: 20935122
Linking carbon metabolism to carotenoid production in mycobacteria using Raman spectroscopy.
Kumar S, Matange N, Umapathy S, Visweswariah SS., FEMS Microbiol. Lett. 362(3), 2014
PMID: 25673658
Metabolic engineering of Escherichia coli for the production of riboflavin.
Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X., Microb. Cell Fact. 13(), 2014
PMID: 25027702
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
l-Isoleucine Production with Corynebacterium glutamicum: Further Flux Increase and Limitation of Export.
Morbach S, Sahm H, Eggeling L., Appl. Environ. Microbiol. 62(12), 1996
PMID: 16535457
Metaphosphate-dependent phosphorylation of riboflavin to FMN by Corynebacterium ammoniagenes.
Nakagawa S., Hagihara T., Fujio T., Aisaka K.., 1995

Neilands J.., 2014
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
Improved method for high-efficiency electrotransformation of Escherichia coli with the large BAC plasmids.
Novakova J, Izsakova A, Grivalsky T, Ottmann C, Farkasovsky M., Folia Microbiol. (Praha) 59(1), 2013
PMID: 23846555
Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803.
Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y, Tanaka K, Saito K, Hirai MY., DNA Res. 20(6), 2013
PMID: 23861321
Genetic engineering of group 2 sigma factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803.
Osanai T, Oikawa A, Azuma M, Tanaka K, Saito K, Hirai MY, Ikeuchi M., J. Biol. Chem. 286(35), 2011
PMID: 21757761
The sigma70 family of sigma factors.
Paget MS, Helmann JD., Genome Biol. 4(1), 2003
PMID: 12540296
Corynebacterium glutamicum sigmaE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE.
Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS., Microbiology (Reading, Engl.) 154(Pt 3), 2008
PMID: 18310037
Metabolic engineering of Corynebacterium glutamicum for L-arginine production.
Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY., Nat Commun 5(), 2014
PMID: 25091334
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Metabolic engineering of Corynebacterium glutamicum for L-serine production.
Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L., Appl. Environ. Microbiol. 71(11), 2005
PMID: 16269752
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405
Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum.
Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L., Appl. Environ. Microbiol. 68(5), 2002
PMID: 11976094

Sambrook J.., 2001
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Functional characterization of Corynebacterium glutamicum mycothiol S-conjugate amidase.
Si M, Long M, Chaudhry MT, Xu Y, Zhang P, Zhang L, Shen X., PLoS ONE 9(12), 2014
PMID: 25514023
Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
Si M, Zhang L, Chaudhry MT, Ding W, Xu Y, Chen C, Akbar A, Shen X, Liu SJ., Appl. Environ. Microbiol. 81(8), 2015
PMID: 25681179
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family.
Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T., Mol. Microbiol. 74(3), 2009
PMID: 19737356
Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum.
Takemoto N, Tanaka Y, Inui M., Nucleic Acids Res. 43(1), 2014
PMID: 25477389
Bacterial sigma factors as targets for engineered or synthetic transcriptional control.
Tripathi L, Zhang Y, Lin Z., Front Bioeng Biotechnol 2(), 2014
PMID: 25232540
Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.
Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S., Nature 417(6890), 2002
PMID: 12000971
Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum.
Vogl C, Grill S, Schilling O, Stulke J, Mack M, Stolz J., J. Bacteriol. 189(20), 2007
PMID: 17693491
Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.
Vogt M, Haas S, Polen T, van Ooyen J, Bott M., Microb Biotechnol 8(2), 2014
PMID: 25488800
Influence of SigB inactivation on Corynebacterium glutamicum protein secretion.
Watanabe K, Teramoto H, Suzuki N, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 97(11), 2012
PMID: 23179627
Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquisition.
Worst DJ, Gerrits MM, Vandenbroucke-Grauls CM, Kusters JG., J. Bacteriol. 180(6), 1998
PMID: 9515916
Medium optimization for production of flavin mononucleotide by the recombinant strain of the yeast Candida famata using statistical designs.
Yatsyshyn V., Fedorovych D., Sibirny A.., 2010

Yukawa H., Inui M.., 2013
Chromosomally encoded small antisense RNA in Corynebacterium glutamicum.
Zemanova M, Kaderabkova P, Patek M, Knoppova M, Silar R, Nesvera J., FEMS Microbiol. Lett. 279(2), 2007
PMID: 18093135
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26257719
PubMed | Europe PMC

Suchen in

Google Scholar