Tunnel junction based memristors as artificial synapses

Thomas A, Niehörster S, Fabretti S, Shepheard N, Kuschel O, Küpper K, Wollschläger J, Krzysteczko P, Chicca E (2015)
Frontiers in Neuroscience 9: 241.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
We prepared magnesia, tantalum oxide and barium titanate based junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of longterm potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices towards their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Neuroscience
Band
9
Art.-Nr.
241
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Thomas A, Niehörster S, Fabretti S, et al. Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience. 2015;9: 241.
Thomas, A., Niehörster, S., Fabretti, S., Shepheard, N., Kuschel, O., Küpper, K., Wollschläger, J., et al. (2015). Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience, 9, 241. doi:10.3389/fnins.2015.00241
Thomas, A., Niehörster, S., Fabretti, S., Shepheard, N., Kuschel, O., Küpper, K., Wollschläger, J., Krzysteczko, P., and Chicca, E. (2015). Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience 9:241.
Thomas, A., et al., 2015. Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience, 9: 241.
A. Thomas, et al., “Tunnel junction based memristors as artificial synapses”, Frontiers in Neuroscience, vol. 9, 2015, : 241.
Thomas, A., Niehörster, S., Fabretti, S., Shepheard, N., Kuschel, O., Küpper, K., Wollschläger, J., Krzysteczko, P., Chicca, E.: Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience. 9, : 241 (2015).
Thomas, Andy, Niehörster, Stefan, Fabretti, Savio, Shepheard, Norman, Kuschel, Olga, Küpper, Karsten, Wollschläger, Joachim, Krzysteczko, Patryk, and Chicca, Elisabetta. “Tunnel junction based memristors as artificial synapses”. Frontiers in Neuroscience 9 (2015): 241.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-02-24T13:31:41Z

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses.
Ambrogio S, Ciocchini N, Laudato M, Milo V, Pirovano A, Fantini P, Ielmini D., Front Neurosci 10(), 2016
PMID: 27013934
Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons.
Sengupta A, Panda P, Wijesinghe P, Kim Y, Roy K., Sci Rep 6(), 2016
PMID: 27443913
Mimicking the brain functions of learning, forgetting and explicit/implicit memories with SrTiO3-based memristive devices.
Yin XB, Yang R, Xue KH, Tan ZH, Zhang XD, Miao XS, Guo X., Phys Chem Chem Phys 18(46), 2016
PMID: 27841389

74 References

Daten bereitgestellt von Europe PubMed Central.

A hybrid nanomemristor/transistor logic circuit capable of self-programming.
Borghetti J, Li Z, Straznicky J, Li X, Ohlberg DA, Wu W, Stewart DR, Williams RS., Proc. Natl. Acad. Sci. U.S.A. 106(6), 2009
PMID: 19171903
'Memristive' switches enable 'stateful' logic operations via material implication.
Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS., Nature 464(7290), 2010
PMID: 20376145
Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
Brader JM, Senn W, Fusi S., Neural Comput 19(11), 2007
PMID: 17883345
Broken particle-hole symmetry at atomically flat a-axis YBa2Cu3O7-delta interfaces.
Davidson BA, Ramazashvili R, Kos S, Eckstein JN., Phys. Rev. Lett. 93(10), 2004
PMID: 15447441
A ferroelectric memristor.
Chanthbouala A, Garcia V, Cherifi RO, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur ND, Bibes M, Barthelemy A, Grollier J., Nat Mater 11(10), 2012
PMID: 22983431
Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications
Chen X., Wu G., Dinghua B.., 2008
A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory.
Chicca E, Badoni D, Dante V, D'Andreagiovanni M, Salina G, Carota L, Fusi S, Del Giudice P., IEEE Trans Neural Netw 14(5), 2003
PMID: 18244578
Neuromorphic electronic circuits for building autonomous cognitive systems
Chicca E., Stefanini F., Bartolozzi C., Indiveri G.., 2014
If it's pinched it's a memristor
Chua L.., 2014

Diorio C., Hasler P., Minch B., Mead C.., 1998
Fatigue of Pb(Zr0.53Ti0.47)O-3 ferroelectric thin films
Du X., Chen I.., 1998
Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array.
Eryilmaz SB, Kuzum D, Jeyasingh R, Kim S, BrightSky M, Lam C, Wong HS., Front Neurosci 8(), 2014
PMID: 25100936
Revival of the magnetoelectric effect
Fiebig M.., 2005
A CMOS switched capacitor implementation of the Mihalas-Niebur neuron
Folowosele F., Etienne-Cummings R., Hamilton T.., 2009
Spike-driven synaptic plasticity: theory, simulation, VLSI implementation.
Fusi S, Annunziato M, Badoni D, Salamon A, Amit DJ., Neural Comput 12(10), 2000
PMID: 11032032
Giant tunnel electroresistance for non-destructive readout of ferroelectric states.
Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur ND, Barthelemy A, Bibes M., Nature 460(7251), 2009
PMID: 19483675
Switching properties of thin Nio films
Gibbons J., Beadle W.., 1964
Biological learning modeled in an adaptive floating-gate system
Gordon C., Hasler P.., 2002
Study of D-E hysteresis loop of TGS based on the Avrami-Type model
Hashimoto S., Orihara H., Ishibashi Y.., 1994
An electrically trainable artificial neural network (ETANN) with 10240 floating gate synapses
Holler M., Tam S., Castro H., Benson R.., 1989
Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions
Huai Y., Albert F., Nguyen P., Pakala M., Valet T.., 2004
Integration of nanoscale memristor synapses in neuromorphic computing architectures.
Indiveri G, Linares-Barranco B, Legenstein R, Deligeorgis G, Prodromakis T., Nanotechnology 24(38), 2013
PMID: 23999381
Note on ferroelectric domain switching
Ishibashi Y., Takagi Y.., 1971
Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films.
Jo JY, Yang SM, Kim TH, Lee HN, Yoon JG, Park S, Jo Y, Jung MH, Noh TW., Phys. Rev. Lett. 102(4), 2009
PMID: 19257442
Nanoscale memristor device as synapse in neuromorphic systems.
Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W., Nano Lett. 10(4), 2010
PMID: 20192230
Tunneling between ferromagnetic films
Julliere M.., 1975
Structural characterization of epitaxial BaTiO3 thin-films grown by Sputter-Deposition on Mgo(100)
Kim S., Hishita S., Kang Y., Baik S.., 1995
Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM
Kishi H., Yoda H., Kai T., Nagase T., Kitagawa E., Yoshikawa M.., 2008

Kozicki M., Mitkova M.., 2008
Current induced resistance change of magnetic tunnel junctions with ultra-thin MgO tunnel barriers
Krzysteczko P., Kou X., Rott K., Thomas A., Reiss G.., 2008
Memristive switching of MgO based magnetic tunnel junctions
Krzysteczko P., Reiss G., Thomas A.., 2009
The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system.
Krzysteczko P, Munchenberger J, Schafers M, Reiss G, Thomas A., Adv. Mater. Weinheim 24(6), 2012
PMID: 22223304
Size dependence of switching field of magnetic tunnel junctions down to 50 nm scale
Kubota H., Ando Y., Miyazaki T., Reiss G., Brueckl H., Schepper W.., 2003
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
Kuzum D, Jeyasingh RG, Lee B, Wong HS., Nano Lett. 12(5), 2011
PMID: 21668029
A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures.
Lee MJ, Lee CB, Lee D, Lee SR, Chang M, Hur JH, Kim YB, Kim CJ, Seo DH, Seo S, Chung UI, Yoo IK, Kim K., Nat Mater 10(8), 2011
PMID: 21743450
Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses
Linares-Barranco B., Serrano-Gotarredona T.., 2009
Complementary resistive switches for passive nanocrossbar memories.
Linn E, Rosezin R, Kugeler C, Waser R., Nat Mater 9(5), 2010
PMID: 20400954

Mead C.., 1989
Neuromorphic electronic systems
Mead C.., 1990
Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI.
Mitra S, Fusi S, Indiveri G., IEEE Trans Biomed Circuits Syst 3(1), 2009
PMID: 23853161
Spin polarized tunneling in ferromagnetic junctions
Moodera J., Mathon G.., 1999
Improved reliability of magnetic field programmable gate arrays through the use of memristive tunnel junctions
Muenchenberger J., Krzysteczko P., Reiss G., Thomas A.., 2011
STDP-enabled learning on a reconfigurable neuromorphic platform
Nease S., Brink S., Hasler P.., 2013
Switched-capacitor realization of presynaptic short-term-plasticity and stop-learning synapses in 28 nm CMOS.
Noack M, Partzsch J, Mayr CG, Hanzsche S, Scholze S, Hoppner S, Ellguth G, Schuffny R., Front Neurosci 9(), 2015
PMID: 25698914
Recent progress in resistive random access memories: materials, switching mechanisms, and performance
Pan F., Gao S., Chen C., Song C., Zeng F.., 2014
Effects of oxidation conditions on the properties of tantalum oxide-films on silicon substrates
Park S., Im H.., 1992
Memory effects in complex materials and nanoscale systems
Pershin Y., Di M.., 2011
Material aspects in emerging nonvolatile memories
Pinnow C., Mikolajick T.., 2004
Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB., Nature 521(7550), 2015
PMID: 25951284
Floating gate synapses with spike-time-dependent plasticity.
Ramakrishnan S, Hasler PE, Gordon C., IEEE Trans Biomed Circuits Syst 5(3), 2011
PMID: 23851475
Tantalum oxide as an alternative low height tunnel barrier in magnetic junctions
Rottländer P., Hehn M., Lenoble O., Schuhl A.., 2001
Electric breakdown in ultrathin MgO tunnel barrier junctions for spin-transfer torque switching
Schaefers M., Drewello V., Reiss G., Thomas A., Thiel K., Eilers G.., 2009
Interfacial phase-change memory.
Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M, Yagi T, Tominaga J., Nat Nanotechnol 6(8), 2011
PMID: 21725305
The missing memristor found.
Strukov DB, Snider GS, Stewart DR, Williams RS., Nature 453(7191), 2008
PMID: 18451858
Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films
Tagantsev A., Stolichnov I., Setter N., Cross J., Tsukada M.., 2002
Aluminum oxidation by a remote electron cyclotron resonance plasma in magnetic tunnel junctions
Thomas A., Brückl H., Sacher M., Schmalhorst J., Reiss G.., 2003
Direct imaging of the structural change generated by dielectric breakdown in MgO based magnetic tunnel junctions
Thomas A., Drewello V., Schaefers M., Weddemann A., Reiss G., Eilers G.., 2008
Memristor-based neural networks
Thomas A.., 2013
Sub-nanosecond switching of a tantalum oxide memristor.
Torrezan AC, Strachan JP, Medeiros-Ribeiro G, Williams RS., Nanotechnology 22(48), 2011
PMID: 22071289
Applied physics. Tunneling across a ferroelectric.
Tsymbal EY, Kohlstedt H., Science 313(5784), 2006
PMID: 16840688
Electrochemical metallization memories--fundamentals, applications, prospects.
Valov I, Waser R, Jameson JR, Kozicki MN., Nanotechnology 22(25), 2011
PMID: 21572191
Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses.
Vogelstein RJ, Mallik U, Vogelstein JT, Cauwenberghs G., IEEE Trans Neural Netw 18(1), 2007
PMID: 17278476
Ferroelectricity, domain structure, and phase transitions of barium titanate
Von A.., 1950
Nanoionics-based resistive switching memories.
Waser R, Aono M., Nat Mater 6(11), 2007
PMID: 17972938
Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges
Waser R., Dittmann R., Staikov G., Szot K.., 2009

Waser R.., 2008
Memristor-CMOS hybrid integrated circuits for reconfigurable logic.
Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong WM, Strukov DB, Snider GS, Medeiros-Ribeiro G, Williams RS., Nano Lett. 9(10), 2009
PMID: 19722537
Programmable nanowire circuits for nanoprocessors.
Yan H, Choe HS, Nam S, Hu Y, Das S, Klemic JF, Ellenbogen JC, Lieber CM., Nature 470(7333), 2011
PMID: 21307937
High switching endurance in TaO[sub x] memristive devices
Yang J., Zhang M., Strachan J., Miao F., Pickett M., Kelley R.., 2010
Exploiting memristive BiFeO3 bilayer structures for compact sequential logics
You T., Shuai Y., Luo W., Du N., Buerger D., Skorupa I.., 2014
Random and localized resistive switching observation in Pt/NiO/Pt
Yun J.-B., Kim S., Seo S., Lee M.-J., Kim D.-C., Ahn S.-E.., 2007

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26217173
PubMed | Europe PMC

Suchen in

Google Scholar