Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method

Bogunovic N, Horstkotte D, Faber L, Bogunovic L, van Buuren F (2016)
Heart and Vessels 31(6): 932-938.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bogunovic, Nikola; Horstkotte, Dieter; Faber, Lothar; Bogunovic, LukasUniBi; van Buuren, Frank
Abstract / Bemerkung
Detection of dysfunctional mitral valve prostheses (MP) remains complex even though being optimized by considering echocardiographically derived prosthetic effective orifice area (VA). The purpose was to compare VA in MP, calculated by the continuity equation (CE) using peak velocities (CEVpeak), mean velocities (CEVmean), velocity–time integrals (CEVTI) and the pressure half time method using 220 ms as constant first (PHT220) as well as optimized constants. In 267 consecutive patients with normally functioning MP, we investigated VA within the first postoperative month. With increasing prosthetic sizes, mean VA values also increase in all calculations. The statistical curves demonstrate no significant difference in graphical steepness but show different levels. Comparison of mean VA showed the known systematic higher values of PHT220 and significantly decreased results when using CEVTI. This systematic difference between mean VA applying PHT220 versus CEVTI is approximately 1.0 cm2 for all prosthetic sizes. Calculations via CEVpeak were close to the results of CEVTI. CEVmean produced values, which graphically correspond to the PHT220 curve. Only PHT220 detected the constructional equal prosthetic inner ring width between 29 and 31 mm. To compensate the systematic difference between CEVTI and PHT220, an optimized constant of 140 ms was calculated to be applied in PHT (PHT140). VA is a robust and, therefore, preferable parameter for investigating MP. If needed, both CE and PHT are applicable with a systematical difference between CEVTI and PHT220. An optimized constant of 140 ms (PHT140) should be applied when calculating VA of mitral valve prostheses via PHT.
Stichworte
Echocardiography Hemodynamics Valve prosthesis Effective opening area Pressure half time Continuity equation
Erscheinungsjahr
2016
Zeitschriftentitel
Heart and Vessels
Band
31
Ausgabe
6
Seite(n)
932-938
ISSN
0910-8327
eISSN
1615-2573
Page URI
https://pub.uni-bielefeld.de/record/2759025

Zitieren

Bogunovic N, Horstkotte D, Faber L, Bogunovic L, van Buuren F. Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method. Heart and Vessels. 2016;31(6):932-938.
Bogunovic, N., Horstkotte, D., Faber, L., Bogunovic, L., & van Buuren, F. (2016). Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method. Heart and Vessels, 31(6), 932-938. doi:10.1007/s00380-015-0690-0
Bogunovic, Nikola, Horstkotte, Dieter, Faber, Lothar, Bogunovic, Lukas, and van Buuren, Frank. 2016. “Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method”. Heart and Vessels 31 (6): 932-938.
Bogunovic, N., Horstkotte, D., Faber, L., Bogunovic, L., and van Buuren, F. (2016). Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method. Heart and Vessels 31, 932-938.
Bogunovic, N., et al., 2016. Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method. Heart and Vessels, 31(6), p 932-938.
N. Bogunovic, et al., “Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method”, Heart and Vessels, vol. 31, 2016, pp. 932-938.
Bogunovic, N., Horstkotte, D., Faber, L., Bogunovic, L., van Buuren, F.: Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method. Heart and Vessels. 31, 932-938 (2016).
Bogunovic, Nikola, Horstkotte, Dieter, Faber, Lothar, Bogunovic, Lukas, and van Buuren, Frank. “Echocardiographically derived effective valve opening area in mitral prostheses: a comparative analysis of various calculations using continuity equation and pressure half time method”. Heart and Vessels 31.6 (2016): 932-938.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

47 References

Daten bereitgestellt von Europe PubMed Central.


N, Heart Vessels (), 2014
Percutaneous balloon valvuloplasty for bioprosthetic mitral valve stenosis.
Hamatani Y, Saito N, Tazaki J, Natsuaki M, Nakai K, Makiyama T, Sasaki Y, Imai M, Watanabe S, Shioi T, Kimura T, Inoue K., Heart Vessels 28(5), 2012
PMID: 23180241
Recommendations for reporting morbid events after heart valve surgery.
Horstkotte D, Lengyel M, Mistiaen WP, Piper C, Voller H; Working Group on Infection, Thrombosis, Embolism and Bleeding of the Society of; Heart Valve Disease., J. Heart Valve Dis. 14(1), 2005
PMID: 15700427
Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography.
Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gottdiener JS, Grayburn PA, Khandheria BK, Levine RA, Marx GR, Miller FA Jr, Nakatani S, Quinones MA, Rakowski H, Rodriguez LL, Swaminathan M, Waggoner AD, Weissman NJ, Zabalgoitia M; American Society of Echocardiography's Guidelines and Standards Committee; Task Force on Prosthetic Valves; American College of Cardiology Cardiovascular Imaging Committee; Cardiac Imaging Committee of the American Heart Association; European Association of Echocardiography; European Society of Cardiology; Japanese Society of Echocardiography; Canadian Society of Echocardiography; American College of Cardiology Foundation; American Heart Association; European Association of Echocardiography; European Society of Cardiology; Japanese Society of Echocardiography; Canadian Society of Echocardiography., J Am Soc Echocardiogr 22(9), 2009
PMID: 19733789
Doppler echocardiography of 79 normal CarboMedics mitral prostheses: a comprehensive assessment including time-velocity integral ratio and prosthesis performance index.
Blauwet LA, Malouf JF, Connolly HM, Hodge DO, Herges RM, Sundt TM 3rd, Miller FA Jr., J Am Soc Echocardiogr 20(10), 2007
PMID: 17588713
Normal values for Doppler echocardiographic assessment of heart valve prostheses.
Rosenhek R, Binder T, Maurer G, Baumgartner H., J Am Soc Echocardiogr 16(11), 2003
PMID: 14608282

Y, Heart Vessels (), 2014
Mitral and aortic valve sclerosis/calcification and carotid atherosclerosis: results from 1065 patients.
Rossi A, Faggiano P, Amado AE, Cicoira M, Bonapace S, Franceschini L, Dini FL, Ghio S, Agricola E, Temporelli PL, Vassanelli C., Heart Vessels 29(6), 2013
PMID: 24196525
Noninvasive assessment of atrioventricular pressure half-time by Doppler ultrasound.
Hatle L, Angelsen B, Tromsdal A., Circulation 60(5), 1979
PMID: 487543
Limitations and pitfalls in the assessment of prosthetic valves with Doppler ultrasonography.
Chambers J, Deverall P., J. Thorac. Cardiovasc. Surg. 104(2), 1992
PMID: 1495317

J, CV World Report 1(), 1988
Normal values of prosthetic valve Doppler echocardiographic parameters: a review.
Reisner SA, Meltzer RS., J Am Soc Echocardiogr 1(3), 1988
PMID: 3078548
Doppler echocardiography in normally functioning replacement heart valves: a literature review.
Wang Z, Grainger N, Chambers J., J. Heart Valve Dis. 4(6), 1995
PMID: 8611974
Doppler assessment of prosthetic valve orifice area. An in vitro study.
Baumgartner H, Khan SS, DeRobertis M, Czer LS, Maurer G., Circulation 85(6), 1992
PMID: 1591841

KB, Ann Biomed Eng (), 2014
Echocardiographic assessment of prosthetic valves.
Nanda NC, Cooper JW, Mahan EF 3rd, Fan P., Circulation 84(3 Suppl), 1991
PMID: 1884491
Accuracy of a mitral valve segmentation method using J-splines for real-time 3D echocardiography data.
Siefert AW, Icenogle DA, Rabbah JP, Saikrishnan N, Rossignac J, Lerakis S, Yoganathan AP., Ann Biomed Eng 41(6), 2013
PMID: 23460042
In vivo short-term Doppler hemodynamic profiles of 189 Carpentier-Edwards Perimount pericardial bioprosthetic valves in the mitral position.
Goetze S, Brechtken J, Agler DA, Thomas JD, Sabik JF 3rd, Jaber WA., J Am Soc Echocardiogr 17(9), 2004
PMID: 15337964

M, J Cardiovasc Surg 35(), 1994
Echocardiographic assessment of prosthetic heart valves.
Blauwet LA, Miller FA Jr., Prog Cardiovasc Dis 57(1), 2014
PMID: 25081405
Doppler mitral pressure half-time: a clinical tool in search of theoretical justification.
Thomas JD, Weyman AE., J. Am. Coll. Cardiol. 10(4), 1987
PMID: 3309007
Nominal size in six bileaflet mechanical aortic valves: a comparison of orifice size and biologic equivalence.
Chambers JB, Oo L, Narracott A, Lawford PM, Blauth CI., J. Thorac. Cardiovasc. Surg. 125(6), 2003
PMID: 12830058
Inaccurate and misleading valve sizing: a proposed standard for valve size nomenclature.
Christakis GT, Buth KJ, Goldman BS, Fremes SE, Rao V, Cohen G, Borger MA, Weisel RD., Ann. Thorac. Surg. 66(4), 1998
PMID: 9800806
Prevalence and the long-term prognosis of functional mitral regurgitation in Japanese patients with symptomatic heart failure.
Kaneko H, Suzuki S, Uejima T, Kano H, Matsuno S, Otsuka T, Takai H, Oikawa Y, Yajima J, Koike A, Nagashima K, Kirigaya H, Sagara K, Tanabe H, Sawada H, Aizawa T, Yamashita T., Heart Vessels 29(6), 2013
PMID: 24275908
Left atrial longitudinal strain parameters predict postoperative persistent atrial fibrillation following mitral valve surgery: a speckle tracking echocardiography study.
Candan O, Ozdemir N, Aung SM, Dogan C, Karabay CY, Gecmen C, Omaygenc O, Guler A., Echocardiography 30(9), 2013
PMID: 23600893
The impact of mitral stenosis on left atrial function assessed by two-dimensional speckle tracking echocardiography.
Demirkol S, Kucuk U, Baysan O, Balta S, Celik T, Kurt IH, Kucuk HO, Yuksel UC, Unlu M, Yokusoglu M., Echocardiography 29(9), 2012
PMID: 22672328
Comparison of durability of bioprostheses in tricuspid and mitral positions.
Ohata T, Kigawa I, Tohda E, Wanibuchi Y., Ann. Thorac. Surg. 71(5 Suppl), 2001
PMID: 11388195
Tricuspid valve replacement with bioprostheses: long-term results and causes of valve dysfunction.
Nakano K, Ishibashi-Ueda H, Kobayashi J, Sasako Y, Yagihara T., Ann. Thorac. Surg. 71(1), 2001
PMID: 11216727
Doppler echocardiographic evaluation of prosthetic valves in tricuspid position.
Aoyagi S, Tomoeda H, Kawano H, Yokose S, Fukunaga S., Asian Cardiovasc Thorac Ann 11(3), 2003
PMID: 14514546
Tricuspid valve replacement: an analysis of 25 years of experience at a single center.
Carrier M, Hebert Y, Pellerin M, Bouchard D, Perrault LP, Cartier R, Basmajian A, Page P, Poirier NC., Ann. Thorac. Surg. 75(1), 2003
PMID: 12537191
Prosthetic replacement of tricuspid valve: bioprosthetic or mechanical.
Kaplan M, Kut MS, Demirtas MM, Cimen S, Ozler A., Ann. Thorac. Surg. 73(2), 2002
PMID: 11845861
Impact of prosthesis-patient mismatch on tricuspid valve regurgitation and pulmonary hypertension following mitral valve replacement.
Angeloni E, Melina G, Benedetto U, Roscitano A, Refice S, Quarto C, Comito C, Pibarot P, Sinatra R., Int. J. Cardiol. 168(4), 2013
PMID: 23931967
Recommendations for post-discharge patient follow up after cardiac valve interventions: a position paper.
Horstkotte D, Lengyel M, Mistiaen WP, Voller H, Reibis R, Bogunovic N, Faber L, Hering D, Piper C; Working Group Infection, Thrombosis, Embolism and Bleeding; Society of Heart Valve Disease., J. Heart Valve Dis. 16(6), 2007
PMID: 18095504
Recommendations for the management of prosthetic valve thrombosis.
Lengyel M, Horstkotte D, Voller H, Mistiaen WP; Working Group Infection, Thrombosis, Embolism and Bleeding of the Society for Heart Valve Disease., J. Heart Valve Dis. 14(5), 2005
PMID: 16245493

G, Cardiol Res Pract (), 2014
A multicenter risk index for atrial fibrillation after cardiac surgery.
Mathew JP, Fontes ML, Tudor IC, Ramsay J, Duke P, Mazer CD, Barash PG, Hsu PH, Mangano DT; Investigators of the Ischemia Research and Education Foundation; Multicenter Study of Perioperative Ischemia Research Group., JAMA 291(14), 2004
PMID: 15082699
Analysis of risk factors for development of atrial fibrillation early after cardiac valvular surgery.
Asher CR, Miller DP, Grimm RA, Cosgrove DM 3rd, Chung MK., Am. J. Cardiol. 82(7), 1998
PMID: 9781973
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26049365
PubMed | Europe PMC

Suchen in

Google Scholar