Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum

Siebert D, Wendisch VF (2015)
Biotechnology for Biofuels 8(1): 91.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Background Production of the versatile bulk chemical 1,2-propanediol and the potential biofuel 1-propanol is still dependent on petroleum, but some approaches to establish bio-based production from renewable feed stocks and to avoid toxic intermediates have been described. The biotechnological workhorse Corynebacterium glutamicum has also been shown to be able to overproduce 1,2-propanediol by metabolic engineering. Additionally, C. glutamicum has previously been engineered for production of the biofuels ethanol and isobutanol but not for 1-propanol. Results In this study, the improved production of 1,2-propanediol by C. glutamicum is presented. The product yield of a C. glutamicum strain expressing the heterologous genes gldA and mgsA from Escherichia coli that encode methylglyoxal synthase gene and glycerol dehydrogenase, respectively, was improved by additional expression of alcohol dehydrogenase gene yqhD from E. coli leading to a yield of 0.131 mol/mol glucose. Deletion of the endogenous genes hdpA and ldh encoding dihydroxyacetone phosphate phosphatase and lactate dehydrogenase, respectively, prevented formation of glycerol and lactate as by-products and improved the yield to 0.343 mol/mol glucose. To construct a 1-propanol producer, the operon ppdABC from Klebsiella oxytoca encoding diol dehydratase was expressed in the improved 1,2-propanediol producing strain ending up with 12 mM 1-propanol and up to 60 mM unconverted 1,2-propanediol. Thus, B 12 -dependent diol dehydratase activity may be limiting 1-propanol production. Conclusions Production of 1,2-propanediol by C. glutamicum was improved by metabolic engineering targeting endogenous enzymes. Furthermore, to the best of our knowledge, production of 1-propanol by recombinant C. glutamicum was demonstrated for the first time.
Stichworte
2-propanediol; 1; 1-propanol; Corynebacterium glutamicum; Metabolic engineering
Erscheinungsjahr
2015
Zeitschriftentitel
Biotechnology for Biofuels
Band
8
Ausgabe
1
Art.-Nr.
91
ISSN
1754-6834
Page URI
https://pub.uni-bielefeld.de/record/2756396

Zitieren

Siebert D, Wendisch VF. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels. 2015;8(1): 91.
Siebert, D., & Wendisch, V. F. (2015). Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels, 8(1), 91. doi:10.1186/s13068-015-0269-0
Siebert, D., and Wendisch, V. F. (2015). Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels 8:91.
Siebert, D., & Wendisch, V.F., 2015. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels, 8(1): 91.
D. Siebert and V.F. Wendisch, “Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum”, Biotechnology for Biofuels, vol. 8, 2015, : 91.
Siebert, D., Wendisch, V.F.: Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels. 8, : 91 (2015).
Siebert, Daniel, and Wendisch, Volker F. “Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum”. Biotechnology for Biofuels 8.1 (2015): 91.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:31Z
MD5 Prüfsumme
63b97855f8c81add531a97265cb73e33

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A seamless and iterative DNA assembly method named PS-Brick and its assisted metabolic engineering for threonine and 1-propanol production.
Liu S, Xiao H, Zhang F, Lu Z, Zhang Y, Deng A, Li Z, Yang C, Wen T., Biotechnol Biofuels 12(), 2019
PMID: 31338122
Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
Baritugo KA, Kim HT, David Y, Choi JI, Hong SH, Jeong KJ, Choi JH, Joo JC, Park SJ., Appl Microbiol Biotechnol 102(9), 2018
PMID: 29557518
A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
Wang B, Hu Q, Zhang Y, Shi R, Chai X, Liu Z, Shang X, Zhang Y, Wen T., Microb Cell Fact 17(1), 2018
PMID: 29685154
A new genome-scale metabolic model of Corynebacterium glutamicum and its application.
Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, Tan T, Zhang Y, Wen T., Biotechnol Biofuels 10(), 2017
PMID: 28680478
Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.
Zhang B, Yu M, Zhou Y, Li Y, Ye BC., Microb Cell Fact 16(1), 2017
PMID: 28938890
Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum.
Lange J, Müller F, Bernecker K, Dahmen N, Takors R, Blombach B., Biotechnol Biofuels 10(), 2017
PMID: 29201141
Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli.
Matsubara M, Urano N, Yamada S, Narutaki A, Fujii M, Kataoka M., J Biosci Bioeng 122(4), 2016
PMID: 27072298
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grünberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl Environ Microbiol 82(20), 2016
PMID: 27520809
Editorial: chemicals and bioproducts from biomass.
du Preez JC., Biotechnol Biofuels 9(), 2016
PMID: 27822306

77 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Microbial production and applications of 1,2-propanediol.
Saxena RK, Anand P, Saran S, Isar J, Agarwal L., Indian J. Microbiol. 50(1), 2010
PMID: 23100801

Lloyd L., 2011

Chauvel A, Lefebvre G., 1989
Microbial formation, biotechnological production and applications of 1,2-propanediol.
Bennett GN, San KY., Appl. Microbiol. Biotechnol. 55(1), 2001
PMID: 11234947
Improved utilisation of renewable resources: new important derivatives of glycerol
Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F., 2008
A novel fermentation: the production of R(−)–1,2–propanediol and acetol by Clostridium thermosaccharolyticum
Cameron DC, Cooney CL., 1986
Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae.
Jung JY, Choi ES, Oh MK., J. Microbiol. Biotechnol. 18(11), 2008
PMID: 19047824
Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae.
Jung JY, Yun HS, Lee J, Oh MK., J. Microbiol. Biotechnol. 21(8), 2011
PMID: 21876375
Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol.
Clomburg JM, Gonzalez R., Biotechnol. Bioeng. 108(4), 2010
PMID: 21404260
Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum.
Niimi S, Suzuki N, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 90(5), 2011
PMID: 21424269
Studies on the amino acid fermentation
Kinoshita S, Udaka S, Shimono M., 1957

AUTHOR UNKNOWN, 2005
Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten
Becker J, Wittmann C., 2015

AUTHOR UNKNOWN, 0
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626

AUTHOR UNKNOWN, 0
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2012
PMID: 23199277
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
Engineering Corynebacterium glutamicum for isobutanol production.
Smith KM, Cho KM, Liao JC., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20376637
Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation.
Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H., Biotechnol. Bioeng. 110(11), 2013
PMID: 23737329
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions.
Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H., J. Mol. Microbiol. Biotechnol. 8(4), 2004
PMID: 16179801
Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R.
Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H., Appl. Environ. Microbiol. 73(7), 2007
PMID: 17277203
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, Inui M., Appl. Microbiol. Biotechnol. 99(3), 2014
PMID: 25421564
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Metabolic engineering of Propionibacterium freudenreichii for n-propanol production.
Ammar EM, Wang Z, Yang ST., Appl. Microbiol. Biotechnol. 97(10), 2013
PMID: 23576036
Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.
Srirangan K, Liu X, Westbrook A, Akawi L, Pyne ME, Moo-Young M, Chou CP., Appl. Microbiol. Biotechnol. 98(22), 2014
PMID: 25301579
Metabolic engineering of Escherichia coli for the production of 1-propanol.
Choi YJ, Park JH, Kim TY, Lee SY., Metab. Eng. 14(5), 2012
PMID: 22871504
Glycerol-3-phosphatase of Corynebacterium glutamicum.
Lindner SN, Meiswinkel TM, Panhorst M, Youn JW, Wiefel L, Wendisch VF., J. Biotechnol. 159(3), 2012
PMID: 22353596

AUTHOR UNKNOWN, 0
Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12.
Subedi KP, Kim I, Kim J, Min B, Park C., FEMS Microbiol. Lett. 279(2), 2007
PMID: 18179582

AUTHOR UNKNOWN, 0
CoryneRegNet 6.0--Updated database content, new analysis methods and novel features focusing on community demands.
Pauling J, Rottger R, Tauch A, Azevedo V, Baumbach J., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22080556
Production of organic acids by Corynebacterium glutamicum under oxygen deprivation.
Okino S, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 68(4), 2005
PMID: 15672268
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol. 10(), 2010
PMID: 21159175

AUTHOR UNKNOWN, 0
Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli.
Tokuyama K, Ohno S, Yoshikawa K, Hirasawa T, Tanaka S, Furusawa C, Shimizu H., Microb. Cell Fact. 13(), 2014
PMID: 24885133

AUTHOR UNKNOWN, 0
Improving microbial biogasoline production in Escherichia coli using tolerance engineering.
Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A., MBio 5(6), 2014
PMID: 25370492
Production of acetol from glycerol using engineered Escherichia coli.
Zhu H, Yi X, Liu Y, Hu H, Wood TK, Zhang X., Bioresour. Technol. 149(), 2013
PMID: 24113547
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 81(3), 2008
PMID: 18777022
Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.
Okino S, Suda M, Fujikura K, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 78(3), 2008
PMID: 18188553
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis.
Vetting MW, Frantom PA, Blanchard JS., J. Biol. Chem. 283(23), 2008
PMID: 18390549
C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
Witthoff S, Muhlroth A, Marienhagen J, Bott M., Appl. Environ. Microbiol. 79(22), 2013
PMID: 24014532
Enhancing Corynebacterium glutamicum robustness by over-expressing a gene, mshA, for mycothiol glycosyltransferase.
Liu YB, Chen C, Chaudhry MT, Si MR, Zhang L, Wang Y, Shen XH., Biotechnol. Lett. 36(7), 2014
PMID: 24737070
Heterologous expression, purification, and properties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca.
Tobimatsu T, Sakai T, Hashida Y, Mizoguchi N, Miyoshi S, Toraya T., Arch. Biochem. Biophys. 347(1), 1997
PMID: 9344474
Structural rationalization for the lack of stereospecificity in coenzyme B12-dependent diol dehydratase.
Shibata N, Nakanishi Y, Fukuoka M, Yamanishi M, Yasuoka N, Toraya T., J. Biol. Chem. 278(25), 2003
PMID: 12684496
Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum.
Marx A, Hans S, Mockel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O'Donohue M, Dunican LK., J. Biotechnol. 104(1-3), 2003
PMID: 12948638
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791

Sambrook J, Russell DW., 2001
Experiments
Eggeling L, Reyes O., 2005
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon.
Follettie MT, Peoples OP, Agoropoulou C, Sinskey AJ., J. Bacteriol. 175(13), 1993
PMID: 8100567
Taxanomical studies on glutamic acid-producing bacteria
Abe S, Takayama K, Kinoshita S., 1967
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26110019
PubMed | Europe PMC

Suchen in

Google Scholar