Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis

Agerbirk N, de Nicola GR, Olsen CE, Müller C, Iori R (2015)
Phytochemistry 118: 109-115.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Agerbirk, N; de Nicola, G R; Olsen, C E; Müller, CarolineUniBi; Iori, R
Erscheinungsjahr
2015
Zeitschriftentitel
Phytochemistry
Band
118
Seite(n)
109-115
ISSN
0031-9422
Page URI
https://pub.uni-bielefeld.de/record/2753316

Zitieren

Agerbirk N, de Nicola GR, Olsen CE, Müller C, Iori R. Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis. Phytochemistry. 2015;118:109-115.
Agerbirk, N., de Nicola, G. R., Olsen, C. E., Müller, C., & Iori, R. (2015). Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis. Phytochemistry, 118, 109-115. doi:10.1016/j.phytochem.2015.06.004
Agerbirk, N., de Nicola, G. R., Olsen, C. E., Müller, C., and Iori, R. (2015). Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis. Phytochemistry 118, 109-115.
Agerbirk, N., et al., 2015. Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis. Phytochemistry, 118, p 109-115.
N. Agerbirk, et al., “Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis”, Phytochemistry, vol. 118, 2015, pp. 109-115.
Agerbirk, N., de Nicola, G.R., Olsen, C.E., Müller, C., Iori, R.: Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis. Phytochemistry. 118, 109-115 (2015).
Agerbirk, N, de Nicola, G R, Olsen, C E, Müller, Caroline, and Iori, R. “Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis”. Phytochemistry 118 (2015): 109-115.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Role of the Glucosinolate-Myrosinase System in Mediating Greater Resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae.
Müller C, Schulz M, Pagnotta E, Ugolini L, Yang T, Matthes A, Lazzeri L, Agerbirk N., J Chem Ecol 44(12), 2018
PMID: 30218254
Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates.
Olsen CE, Huang XC, Hansen CIC, Cipollini D, Ørgaard M, Matthes A, Geu-Flores F, Koch MA, Agerbirk N., Phytochemistry 132(), 2016
PMID: 27743600
Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.
Müller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, Agerbirk N., Phytochemistry 118(), 2015
PMID: 26318325

44 References

Daten bereitgestellt von Europe PubMed Central.

Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes.
Agerbirk N, Warwick SI, Hansen PR, Olsen CE., Phytochemistry 69(17), 2008
PMID: 18995873
Variable glucosinolate profiles of Cardamine pratensis (Brassicaceae) with equal chromosome numbers.
Agerbirk N, Olsen CE, Chew FS, Orgaard M., J. Agric. Food Chem. 58(8), 2010
PMID: 20334382
Glucosinolate structures in evolution.
Agerbirk N, Olsen CE., Phytochemistry 77(), 2012
PMID: 22405332
Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: focus on glucoraphanin
Angelino, J. Funct. Foods 7(), 2014
Biological targets of isothiocyanates.
Brown KK, Hampton MB., Biochim. Biophys. Acta 1810(9), 2011
PMID: 21704127
The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo.
Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, Rollin P, Barillari J, Manzotti C, Morazzoni P, D'Incalci M., Biochem. Pharmacol. 79(8), 2009
PMID: 20006591
Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein.
Burow M, Bergner A, Gershenzon J, Wittstock U., Plant Mol. Biol. 63(1), 2006
PMID: 17139450
Isolation and identification of 4-α-rhamnosyloxy benzyl glucosinolate in Noccaea caerulescens showing intraspecific variation.
de Graaf RM, Krosse S, Swolfs AE, te Brinke E, Prill N, Leimu R, van Galen PM, Wang Y, Aarts MG, van Dam NM., Phytochemistry 110(), 2014
PMID: 25482220
Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices.
Esparza E, Hadzich A, Kofer W, Mithofer A, Cosio EG., Phytochemistry 116(), 2015
PMID: 25817836
Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera.
Forster N, Ulrichs C, Schreiner M, Muller CT, Mewis I., Food Chem 166(), 2014
PMID: 25053080
Ecotype variability in growth and secondary metabolite profile in Moringa oleifera: impact of sulfur and water availability.
Forster N, Ulrichs C, Schreiner M, Arndt N, Schmidt R, Mewis I., J. Agric. Food Chem. 63(11), 2015
PMID: 25689922
Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid.
Francis F, Vanhaelen N, Haubruge E., Arch. Insect Biochem. Physiol. 58(3), 2005
PMID: 15717317
Antibacterial activity of glucomoringin bioactivated with myrosinase against two important pathogens affecting the health of long-term patients in hospitals
Galuppo, Molecules 18(), 2013
4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury.
Giacoppo S, Galuppo M, De Nicola GR, Iori R, Bramanti P, Mazzon E., Bioorg. Med. Chem. 23(1), 2014
PMID: 25497964
First synthesis of an O-glycosylated glucosinolate isolated from Moringa oleifera
Gueyrard, Tetrahedron Lett. 41(), 2000

Harborne, 1973
Pharmacokinetics of dietary phenethyl isothiocyanate in rats.
Ji Y, Kuo Y, Morris ME., Pharm. Res. 22(10), 2005
PMID: 16180123
Interaction of oxidized glutathione with allyl isothiocyanate
Kawakashi, Phytochemistry 24(), 1985
Isothiocyanates in myrosinase-treated seed extracts of Moringa peregrina
Kjær, Phytochemistry 18(), 1979
Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities
Li, J. Chem. Ecol. 26(), 2000
Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end crops genetically engineered to attract Plutella xylostella
Møldrup, Plant Biotech. J. 10(), 2012
Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.
Muller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, Agerbirk N., Phytochemistry 118(), 2015
PMID: 26318325
Isolation of glucosinolates and the identification of o-(α-l-rhamnopyranosyloxy)benzylglucosinolate from Reseda odorata
Olsen, Phytochemistry 18(), 1979
Glucosinolates in Sesamoides canescens and S. pygmaea: identification of 2-α-L-arabinopyranosyloxy)-2-phenylethylglucosinolate
Olsen, Phytochemistry 20(), 1981
Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores.
Schramm K, Vassao DG, Reichelt M, Gershenzon J, Wittstock U., Insect Biochem. Mol. Biol. 42(3), 2011
PMID: 22193392
Hoverfly glutathione S-transferases and effect on Brassicaceae secondary metabolites
Vanhaelen, Pestic. Biochem. Physiol. 71(), 2001
Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro.
Waterman C, Cheng DM, Rojas-Silva P, Poulev A, Dreifus J, Lila MA, Raskin I., Phytochemistry 103(), 2014
PMID: 24731259
Transcriptome analysis of Barbarea vulgaris infested with diamondback moth (Plutella xylostella) larvae.
Wei X, Zhang X, Shen D, Wang H, Wu Q, Lu P, Qiu Y, Song J, Zhang Y, Li X., PLoS ONE 8(5), 2013
PMID: 23696897
Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
Winde I, Wittstock U., Phytochemistry 72(13), 2011
PMID: 21316065

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26342619
PubMed | Europe PMC

Suchen in

Google Scholar