Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)

Michael N, Loewel S, Bischof H-J (2015)
PLoS ONE 10(4): e0124917.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Michael, Neethu; Loewel, Siegrid; Bischof, Hans-JoachimUniBi
Abstract / Bemerkung
The visual wulst of the zebra finch comprises at least two retinotopic maps of the contralateral eye. As yet, it is not known how much of the visual field is represented in the wulst neuronal maps, how the organization of the maps is related to the retinal architecture, and how information from the ipsilateral eye is involved in the activation of the wulst. Here, we have used auto-fluorescent flavoprotein imaging and classical anatomical methods to investigate such characteristics of the most posterior map of the multiple retinotopic representations. We found that the visual wulst can be activated by visual stimuli from a large part of the visual field of the contralateral eye. Horizontally, the visual field representation extended from -5 degrees beyond the beak tip up to +125 degrees laterally. Vertically, a small strip from -10 degrees below to about +25 degrees above the horizon activated the visual wulst. Although retinal ganglion cells had a much higher density around the fovea and along a strip extending from the fovea towards the beak tip, these areas were not overrepresented in the wulst map. The wulst area activated from the foveal region of the ipsilateral eye, overlapped substantially with the middle of the three contralaterally activated regions in the visual wulst, and partially with the other two. Visual wulst activity evoked by stimulation of the frontal visual field was stronger with contralateral than with binocular stimulation. This confirms earlier electrophysiological studies indicating an inhibitory influence of the activation of the ipsilateral eye on wulst activity elicited by stimulating the contralateral eye. The lack of a foveal overrepresentation suggests that identification of objects may not be the primary task of the zebra finch visual wulst. Instead, this brain area may be involved in the processing of visual information necessary for spatial orientation.
Erscheinungsjahr
2015
Zeitschriftentitel
PLoS ONE
Band
10
Ausgabe
4
Art.-Nr.
e0124917
ISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2736466

Zitieren

Michael N, Loewel S, Bischof H-J. Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE. 2015;10(4): e0124917.
Michael, N., Loewel, S., & Bischof, H. - J. (2015). Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE, 10(4), e0124917. doi:10.1371/journal.pone.0124917
Michael, Neethu, Loewel, Siegrid, and Bischof, Hans-Joachim. 2015. “Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”. PLoS ONE 10 (4): e0124917.
Michael, N., Loewel, S., and Bischof, H. - J. (2015). Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE 10:e0124917.
Michael, N., Loewel, S., & Bischof, H.-J., 2015. Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE, 10(4): e0124917.
N. Michael, S. Loewel, and H.-J. Bischof, “Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”, PLoS ONE, vol. 10, 2015, : e0124917.
Michael, N., Loewel, S., Bischof, H.-J.: Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE. 10, : e0124917 (2015).
Michael, Neethu, Loewel, Siegrid, and Bischof, Hans-Joachim. “Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”. PLoS ONE 10.4 (2015): e0124917.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Functional MRI in the Nile crocodile: a new avenue for evolutionary neurobiology.
Behroozi M, Billings BK, Helluy X, Manger PR, Güntürkün O, Ströckens F., Proc Biol Sci 285(1877), 2018
PMID: 29695446
Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata).
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds.
Wylie DR, Gutiérrez-Ibáñez C, Iwaniuk AN., Front Neurosci 9(), 2015
PMID: 26321905

83 References

Daten bereitgestellt von Europe PubMed Central.

Somatosensory homunculus as drawn by MEG.
Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y, Kachi T, Kakigi R., Neuroimage 7(4 Pt 1), 1998
PMID: 9626677
Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti).
Rosa MG, Casagrande VA, Preuss T, Kaas JH., J. Neurophysiol. 77(6), 1997
PMID: 9212268
Functional anatomy of macaque striate cortex. II. Retinotopic organization.
Tootell RB, Switkes E, Silverman MS, Hamilton SL., J. Neurosci. 8(5), 1988
PMID: 3367210
Visual areas of the mammalian cerebral cortex.
Van Essen DC., Annu. Rev. Neurosci. 2(), 1979
PMID: 120129

AUTHOR UNKNOWN, 2012

AUTHOR UNKNOWN, 1977

AUTHOR UNKNOWN, 1977
A comparative study of deep avian foveas.
Fite KV, Rosenfield-Wessels S., Brain Behav. Evol. 12(1-2), 1975
PMID: 811324
Cortical magnification factor and the ganglion cell density of the primate retina.
Wassle H, Grunert U, Rohrenbeck J, Boycott BB., Nature 341(6243), 1989
PMID: 2797190

AUTHOR UNKNOWN, 1984
Binocular integration and disparity selectivity in mouse primary visual cortex.
Scholl B, Burge J, Priebe NJ., J. Neurophysiol. 109(12), 2013
PMID: 23515794

AUTHOR UNKNOWN, 2012
Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds.
Iwaniuk AN, Heesy CP, Hall MI, Wylie DR., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(3), 2007
PMID: 18071712

AUTHOR UNKNOWN, 1993
The visual pigments and oil droplets of the chicken retina.
Bowmaker JK, Knowles A., Vision Res. 17(7), 1977
PMID: 898682
Ueber den Bau und die Funktion des Kammes (Pecten) im Auge der Voegel
AUTHOR UNKNOWN, 1881
The vertebrate eye
AUTHOR UNKNOWN, 1942
The various functional areas of the retina of pigeons
AUTHOR UNKNOWN, 1968

AUTHOR UNKNOWN, 1973
Optical imaging of retinotopic maps in a small songbird, the zebra finch.
Keary N, Voss J, Lehmann K, Bischof HJ, Lowel S., PLoS ONE 5(8), 2010
PMID: 20694137
The visual field and visually guided behavior in the zebra finch (Taeniopygia guttata)
AUTHOR UNKNOWN, 1988
Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence.
Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R., J. Physiol. (Lond.) 549(Pt 3), 2003
PMID: 12730344
Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.
Tohmi M, Kitaura H, Komagata S, Kudoh M, Shibuki K., J. Neurosci. 26(45), 2006
PMID: 17093098
A stereotaxic headholder for small birds.
Bischof HJ., Brain Res. Bull. 7(4), 1981
PMID: 7028213

AUTHOR UNKNOWN, 0
Satisfactory general anesthesia in birds.
GANDAL CP., J. Am. Vet. Med. Assoc. 128(7), 1956
PMID: 13306644

AUTHOR UNKNOWN, 2007

AUTHOR UNKNOWN, 1972
Effects of common anesthetics on eye movement and electroretinogram.
Nair G, Kim M, Nagaoka T, Olson DE, Thule PM, Pardue MT, Duong TQ., Doc Ophthalmol 122(3), 2011
PMID: 21519880
Eye movements of laterally eyed birds are not independent.
Voss J, Bischof HJ., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411551
The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds.
Martin GR., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369(1636), 2014
PMID: 24395967
Functional subdivisions of the ascending visual pathways in the pigeon.
Gunturkun O, Hahmann U., Behav. Brain Res. 98(2), 1999
PMID: 10683107
Electrophysiological investigations on the pigeon's optic tectum.
Bilge M., Q J Exp Physiol Cogn Med Sci 56(4), 1971
PMID: 4940650
The projection of the retina, including the 'red area' on to the optic tectum of the pigeon.
Clarke PG, Whitteridge D., Q J Exp Physiol Cogn Med Sci 61(4), 1976
PMID: 1050022
Some observations on the visual optics of kingfishers (Aves, Coraciformes, Alcedinidae)
AUTHOR UNKNOWN, 1987
On the position of a ribbon like central area in the eyes of some birds
AUTHOR UNKNOWN, 1958

AUTHOR UNKNOWN, 1955
The retinotopic organization of area 17 (striate cortex) in the cat.
Tusa RJ, Palmer LA, Rosenquist AC., J. Comp. Neurol. 177(2), 1978
PMID: 413845
Selective depletion of beta cells affects the development of alpha cells in cat retina
AUTHOR UNKNOWN, 1982
Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system.
Watanabe S, Mayer U, Bischof HJ., Behav. Brain Res. 222(1), 2011
PMID: 21435357
Participation of the homing pigeon thalamofugal visual pathway in sun-compass associative learning.
Budzynski CA, Gagliardo A, Ioale P, Bingman VP., Eur. J. Neurosci. 15(1), 2002
PMID: 11860519
Visual but not trigeminal mediation of magnetic compass information in a migratory bird.
Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H., Nature 461(7268), 2009
PMID: 19865170
A visual pathway links brain structures active during magnetic compass orientation in migratory birds.
Heyers D, Manns M, Luksch H, Gunturkun O, Mouritsen H., PLoS ONE 2(9), 2007
PMID: 17895978
Lateralized activation of Cluster N in the brains of migratory songbirds.
Liedvogel M, Feenders G, Wada K, Troje NF, Jarvis ED, Mouritsen H., Eur. J. Neurosci. 25(4), 2007
PMID: 17331212
Magnetoreception and its use in bird navigation.
Mouritsen H, Ritz T., Curr. Opin. Neurobiol. 15(4), 2005
PMID: 16006116
Receptive field properties of single neurons in rat primary visual cortex.
Girman SV, Sauve Y, Lund RD., J. Neurophysiol. 82(1), 1999
PMID: 10400959
Oblique effect: a neural basis in the visual cortex.
Li B, Peterson MR, Freeman RD., J. Neurophysiol. 90(1), 2003
PMID: 12611956
Contralateral projections of the optic tectum in the zebra finch (Taenopygia guttata castanotis)
AUTHOR UNKNOWN, 1990
Regulation of ipsilateral visual information within the tectofugal visual system in zebra finches.
Voss J, Bischof HJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(7), 2003
PMID: 12811488
Interocular suppression in cat striate cortex is not orientation selective.
Sengpiel F, Freeman TC, Blakemore C., Neuroreport 6(16), 1995
PMID: 8595210
Kritische Übersicht zur selektiven Sensomotorik des Blickens und multifovealen Spähens bei Vögeln
AUTHOR UNKNOWN, 1990
Binocular integration in the mouse lateral geniculate nuclei.
Howarth M, Walmsley L, Brown TM., Curr. Biol. 24(11), 2014
PMID: 24856206
Pigeon's eyes converge during feeding: evidence for frontal binocular fixation in a lateral-eyed bird.
Martinoya C, Le Houezec J, Bloch S., Neurosci. Lett. 45(3), 1984
PMID: 6539458
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25853253
PubMed | Europe PMC

Suchen in

Google Scholar