Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)
Michael N, Loewel S, Bischof H-J (2015)
PLoS ONE 10(4): e0124917.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Michael, Neethu;
Loewel, Siegrid;
Bischof, Hans-JoachimUniBi
Einrichtung
Abstract / Bemerkung
The visual wulst of the zebra finch comprises at least two retinotopic maps of the contralateral eye. As yet, it is not known how much of the visual field is represented in the wulst neuronal maps, how the organization of the maps is related to the retinal architecture, and how information from the ipsilateral eye is involved in the activation of the wulst. Here, we have used auto-fluorescent flavoprotein imaging and classical anatomical methods to investigate such characteristics of the most posterior map of the multiple retinotopic representations. We found that the visual wulst can be activated by visual stimuli from a large part of the visual field of the contralateral eye. Horizontally, the visual field representation extended from -5 degrees beyond the beak tip up to +125 degrees laterally. Vertically, a small strip from -10 degrees below to about +25 degrees above the horizon activated the visual wulst. Although retinal ganglion cells had a much higher density around the fovea and along a strip extending from the fovea towards the beak tip, these areas were not overrepresented in the wulst map. The wulst area activated from the foveal region of the ipsilateral eye, overlapped substantially with the middle of the three contralaterally activated regions in the visual wulst, and partially with the other two. Visual wulst activity evoked by stimulation of the frontal visual field was stronger with contralateral than with binocular stimulation. This confirms earlier electrophysiological studies indicating an inhibitory influence of the activation of the ipsilateral eye on wulst activity elicited by stimulating the contralateral eye. The lack of a foveal overrepresentation suggests that identification of objects may not be the primary task of the zebra finch visual wulst. Instead, this brain area may be involved in the processing of visual information necessary for spatial orientation.
Erscheinungsjahr
2015
Zeitschriftentitel
PLoS ONE
Band
10
Ausgabe
4
Art.-Nr.
e0124917
Urheberrecht / Lizenzen
ISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2736466
Zitieren
Michael N, Loewel S, Bischof H-J. Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE. 2015;10(4): e0124917.
Michael, N., Loewel, S., & Bischof, H. - J. (2015). Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE, 10(4), e0124917. doi:10.1371/journal.pone.0124917
Michael, Neethu, Loewel, Siegrid, and Bischof, Hans-Joachim. 2015. “Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”. PLoS ONE 10 (4): e0124917.
Michael, N., Loewel, S., and Bischof, H. - J. (2015). Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE 10:e0124917.
Michael, N., Loewel, S., & Bischof, H.-J., 2015. Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE, 10(4): e0124917.
N. Michael, S. Loewel, and H.-J. Bischof, “Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”, PLoS ONE, vol. 10, 2015, : e0124917.
Michael, N., Loewel, S., Bischof, H.-J.: Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLoS ONE. 10, : e0124917 (2015).
Michael, Neethu, Loewel, Siegrid, and Bischof, Hans-Joachim. “Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”. PLoS ONE 10.4 (2015): e0124917.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
3 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Functional MRI in the Nile crocodile: a new avenue for evolutionary neurobiology.
Behroozi M, Billings BK, Helluy X, Manger PR, Güntürkün O, Ströckens F., Proc Biol Sci 285(1877), 2018
PMID: 29695446
Behroozi M, Billings BK, Helluy X, Manger PR, Güntürkün O, Ströckens F., Proc Biol Sci 285(1877), 2018
PMID: 29695446
Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata).
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds.
Wylie DR, Gutiérrez-Ibáñez C, Iwaniuk AN., Front Neurosci 9(), 2015
PMID: 26321905
Wylie DR, Gutiérrez-Ibáñez C, Iwaniuk AN., Front Neurosci 9(), 2015
PMID: 26321905
83 References
Daten bereitgestellt von Europe PubMed Central.
Somatosensory homunculus as drawn by MEG.
Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y, Kachi T, Kakigi R., Neuroimage 7(4 Pt 1), 1998
PMID: 9626677
Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y, Kachi T, Kakigi R., Neuroimage 7(4 Pt 1), 1998
PMID: 9626677
Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti).
Rosa MG, Casagrande VA, Preuss T, Kaas JH., J. Neurophysiol. 77(6), 1997
PMID: 9212268
Rosa MG, Casagrande VA, Preuss T, Kaas JH., J. Neurophysiol. 77(6), 1997
PMID: 9212268
Functional anatomy of macaque striate cortex. II. Retinotopic organization.
Tootell RB, Switkes E, Silverman MS, Hamilton SL., J. Neurosci. 8(5), 1988
PMID: 3367210
Tootell RB, Switkes E, Silverman MS, Hamilton SL., J. Neurosci. 8(5), 1988
PMID: 3367210
Visual areas of the mammalian cerebral cortex.
Van Essen DC., Annu. Rev. Neurosci. 2(), 1979
PMID: 120129
Van Essen DC., Annu. Rev. Neurosci. 2(), 1979
PMID: 120129
AUTHOR UNKNOWN, 2012
A quantitative analysis of the distribution of ganglion cells in the cat's retina.
Stone J., J. Comp. Neurol. 124(3), 1965
PMID: 4955540
Stone J., J. Comp. Neurol. 124(3), 1965
PMID: 4955540
AUTHOR UNKNOWN, 1977
AUTHOR UNKNOWN, 1977
A comparative study of deep avian foveas.
Fite KV, Rosenfield-Wessels S., Brain Behav. Evol. 12(1-2), 1975
PMID: 811324
Fite KV, Rosenfield-Wessels S., Brain Behav. Evol. 12(1-2), 1975
PMID: 811324
Cortical magnification factor and the ganglion cell density of the primate retina.
Wassle H, Grunert U, Rohrenbeck J, Boycott BB., Nature 341(6243), 1989
PMID: 2797190
Wassle H, Grunert U, Rohrenbeck J, Boycott BB., Nature 341(6243), 1989
PMID: 2797190
Topographic organization of the orientation column system in large flat-mounts of the cat visual cortex: a 2-deoxyglucose study.
Lowel S, Freeman B, Singer W., J. Comp. Neurol. 255(3), 1987
PMID: 3819021
Lowel S, Freeman B, Singer W., J. Comp. Neurol. 255(3), 1987
PMID: 3819021
Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba).
Pettigrew JD, Konishi M., Science 193(4254), 1976
PMID: 948741
Pettigrew JD, Konishi M., Science 193(4254), 1976
PMID: 948741
Horizontal-disparity tuning of neurons in the visual forebrain of the behaving barn owl.
Nieder A, Wagner H., J. Neurophysiol. 83(5), 2000
PMID: 10805692
Nieder A, Wagner H., J. Neurophysiol. 83(5), 2000
PMID: 10805692
AUTHOR UNKNOWN, 1984
Binocular integration and disparity selectivity in mouse primary visual cortex.
Scholl B, Burge J, Priebe NJ., J. Neurophysiol. 109(12), 2013
PMID: 23515794
Scholl B, Burge J, Priebe NJ., J. Neurophysiol. 109(12), 2013
PMID: 23515794
AUTHOR UNKNOWN, 2012
Functional and anatomical organization of floccular zones: a preserved feature in vertebrates.
Voogd J, Wylie DR., J. Comp. Neurol. 470(2), 2004
PMID: 14750155
Voogd J, Wylie DR., J. Comp. Neurol. 470(2), 2004
PMID: 14750155
Structural organization of parallel information processing within the tectofugal visual system of the pigeon.
Hellmann B, Gunturkun O., J. Comp. Neurol. 429(1), 2001
PMID: 11086292
Hellmann B, Gunturkun O., J. Comp. Neurol. 429(1), 2001
PMID: 11086292
Visual processing in pigeon nucleus rotundus: luminance, color, motion, and looming subdivisions.
Wang YC, Jiang S, Frost BJ., Vis. Neurosci. 10(1), 1993
PMID: 8424926
Wang YC, Jiang S, Frost BJ., Vis. Neurosci. 10(1), 1993
PMID: 8424926
On the structure and function of the tectofugal visual pathway in laterally eyed birds.
Bischof HJ, Watanabe S., Eur J Morphol 35(4), 1997
PMID: 9290933
Bischof HJ, Watanabe S., Eur J Morphol 35(4), 1997
PMID: 9290933
Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds.
Iwaniuk AN, Heesy CP, Hall MI, Wylie DR., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(3), 2007
PMID: 18071712
Iwaniuk AN, Heesy CP, Hall MI, Wylie DR., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(3), 2007
PMID: 18071712
Neural connections of the "visual wulst" of the avian telencephalon. Experimental studies in the piegon (Columba livia) and owl (Speotyto cunicularia).
Karten HJ, Hodos W, Nauta WJ, Revzin AM., J. Comp. Neurol. 150(3), 1973
PMID: 4721779
Karten HJ, Hodos W, Nauta WJ, Revzin AM., J. Comp. Neurol. 150(3), 1973
PMID: 4721779
AUTHOR UNKNOWN, 1993
Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices?
Medina L, Reiner A., Trends Neurosci. 23(1), 2000
PMID: 10631781
Medina L, Reiner A., Trends Neurosci. 23(1), 2000
PMID: 10631781
The visual pigments, oil droplets and spectral sensitivity of the pigeon.
Bowmaker JK., Vision Res. 17(10), 1977
PMID: 595377
Bowmaker JK., Vision Res. 17(10), 1977
PMID: 595377
The visual pigments and oil droplets of the chicken retina.
Bowmaker JK, Knowles A., Vision Res. 17(7), 1977
PMID: 898682
Bowmaker JK, Knowles A., Vision Res. 17(7), 1977
PMID: 898682
Ueber den Bau und die Funktion des Kammes (Pecten) im Auge der Voegel
AUTHOR UNKNOWN, 1881
AUTHOR UNKNOWN, 1881
The vertebrate eye
AUTHOR UNKNOWN, 1942
AUTHOR UNKNOWN, 1942
The various functional areas of the retina of pigeons
AUTHOR UNKNOWN, 1968
AUTHOR UNKNOWN, 1968
Topography and morphology of retinal ganglion cells in Falconiforms: a study on predatory and carrion-eating birds.
Inzunza O, Bravo H, Smith RL, Angel M., Anat. Rec. 229(2), 1991
PMID: 2012314
Inzunza O, Bravo H, Smith RL, Angel M., Anat. Rec. 229(2), 1991
PMID: 2012314
AUTHOR UNKNOWN, 1973
Optical imaging of retinotopic maps in a small songbird, the zebra finch.
Keary N, Voss J, Lehmann K, Bischof HJ, Lowel S., PLoS ONE 5(8), 2010
PMID: 20694137
Keary N, Voss J, Lehmann K, Bischof HJ, Lowel S., PLoS ONE 5(8), 2010
PMID: 20694137
Afferent connections of the ectostriatum and visual wulst in the zebra finch (Taeniopygia guttata castanotis Gould)--an HRP study.
Nixdorf BE, Bischof HJ., Brain Res. 248(1), 1982
PMID: 7127143
Nixdorf BE, Bischof HJ., Brain Res. 248(1), 1982
PMID: 7127143
Differences between ipsilaterally and contralaterally evoked potentials in the visual wulst of the zebra finch.
Bredenkotter M, Bischof HJ., Vis. Neurosci. 5(2), 1990
PMID: 2278943
Bredenkotter M, Bischof HJ., Vis. Neurosci. 5(2), 1990
PMID: 2278943
Ipsilaterally evoked responses of the zebra finch visual wulst are reduced during ontogeny.
Bredenkotter M, Bischof HJ., Brain Res. 515(1-2), 1990
PMID: 2357573
Bredenkotter M, Bischof HJ., Brain Res. 515(1-2), 1990
PMID: 2357573
The organization of the visual hyperstriatum in the domestic chick. II. Receptive field properties of single units.
Wilson P., Brain Res. 188(2), 1980
PMID: 7370766
Wilson P., Brain Res. 188(2), 1980
PMID: 7370766
The visual field and visually guided behavior in the zebra finch (Taeniopygia guttata)
AUTHOR UNKNOWN, 1988
AUTHOR UNKNOWN, 1988
Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence.
Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R., J. Physiol. (Lond.) 549(Pt 3), 2003
PMID: 12730344
Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R., J. Physiol. (Lond.) 549(Pt 3), 2003
PMID: 12730344
Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.
Tohmi M, Kitaura H, Komagata S, Kudoh M, Shibuki K., J. Neurosci. 26(45), 2006
PMID: 17093098
Tohmi M, Kitaura H, Komagata S, Kudoh M, Shibuki K., J. Neurosci. 26(45), 2006
PMID: 17093098
Flavoprotein autofluorescence imaging of visual system activity in zebra finches and mice.
Michael N, Bischof HJ, Lowel S., PLoS ONE 9(1), 2014
PMID: 24400130
Michael N, Bischof HJ, Lowel S., PLoS ONE 9(1), 2014
PMID: 24400130
New paradigm for optical imaging: temporally encoded maps of intrinsic signal.
Kalatsky VA, Stryker MP., Neuron 38(4), 2003
PMID: 12765606
Kalatsky VA, Stryker MP., Neuron 38(4), 2003
PMID: 12765606
AUTHOR UNKNOWN, 0
The pigeon's eye viewed through an ophthalmoscopic microscope: orientation of retinal landmarks and significance of eye movements.
Nalbach HO, Wolf-Oberhollenzer F, Kirschfeld K., Vision Res. 30(4), 1990
PMID: 2339507
Nalbach HO, Wolf-Oberhollenzer F, Kirschfeld K., Vision Res. 30(4), 1990
PMID: 2339507
Satisfactory general anesthesia in birds.
GANDAL CP., J. Am. Vet. Med. Assoc. 128(7), 1956
PMID: 13306644
GANDAL CP., J. Am. Vet. Med. Assoc. 128(7), 1956
PMID: 13306644
A comparative analysis of methods of estimating the size of cell populations from microtome sections.
Clarke R., J R Microsc Soc 88(2), 1968
PMID: 5674715
Clarke R., J R Microsc Soc 88(2), 1968
PMID: 5674715
AUTHOR UNKNOWN, 2007
AUTHOR UNKNOWN, 1972
Effects of common anesthetics on eye movement and electroretinogram.
Nair G, Kim M, Nagaoka T, Olson DE, Thule PM, Pardue MT, Duong TQ., Doc Ophthalmol 122(3), 2011
PMID: 21519880
Nair G, Kim M, Nagaoka T, Olson DE, Thule PM, Pardue MT, Duong TQ., Doc Ophthalmol 122(3), 2011
PMID: 21519880
Eye movements of laterally eyed birds are not independent.
Voss J, Bischof HJ., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411551
Voss J, Bischof HJ., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411551
The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds.
Martin GR., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369(1636), 2014
PMID: 24395967
Martin GR., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369(1636), 2014
PMID: 24395967
Retinal afferents to the tectum opticum and the nucleus opticus principalis thalami in the pigeon.
Remy M, Gunturkun O., J. Comp. Neurol. 305(1), 1991
PMID: 1709649
Remy M, Gunturkun O., J. Comp. Neurol. 305(1), 1991
PMID: 1709649
Functional subdivisions of the ascending visual pathways in the pigeon.
Gunturkun O, Hahmann U., Behav. Brain Res. 98(2), 1999
PMID: 10683107
Gunturkun O, Hahmann U., Behav. Brain Res. 98(2), 1999
PMID: 10683107
Electrophysiological investigations on the pigeon's optic tectum.
Bilge M., Q J Exp Physiol Cogn Med Sci 56(4), 1971
PMID: 4940650
Bilge M., Q J Exp Physiol Cogn Med Sci 56(4), 1971
PMID: 4940650
The projection of the retina, including the 'red area' on to the optic tectum of the pigeon.
Clarke PG, Whitteridge D., Q J Exp Physiol Cogn Med Sci 61(4), 1976
PMID: 1050022
Clarke PG, Whitteridge D., Q J Exp Physiol Cogn Med Sci 61(4), 1976
PMID: 1050022
Integration of information from both eyes by single neurons of nucleus rotundus, ectostriatum and lateral neostriatum in the zebra finch (Taeniopygia guttata castanotis Gould).
Schmidt A, Bischof HJ., Brain Res. 923(1-2), 2001
PMID: 11743968
Schmidt A, Bischof HJ., Brain Res. 923(1-2), 2001
PMID: 11743968
Some observations on the visual optics of kingfishers (Aves, Coraciformes, Alcedinidae)
AUTHOR UNKNOWN, 1987
AUTHOR UNKNOWN, 1987
On the position of a ribbon like central area in the eyes of some birds
AUTHOR UNKNOWN, 1958
AUTHOR UNKNOWN, 1958
AUTHOR UNKNOWN, 1955
The retinotopic organization of area 17 (striate cortex) in the cat.
Tusa RJ, Palmer LA, Rosenquist AC., J. Comp. Neurol. 177(2), 1978
PMID: 413845
Tusa RJ, Palmer LA, Rosenquist AC., J. Comp. Neurol. 177(2), 1978
PMID: 413845
Selective depletion of beta cells affects the development of alpha cells in cat retina
AUTHOR UNKNOWN, 1982
AUTHOR UNKNOWN, 1982
Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey.
Allman JM, Kaas JH., Science 191(4227), 1976
PMID: 814619
Allman JM, Kaas JH., Science 191(4227), 1976
PMID: 814619
Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system.
Watanabe S, Mayer U, Bischof HJ., Behav. Brain Res. 222(1), 2011
PMID: 21435357
Watanabe S, Mayer U, Bischof HJ., Behav. Brain Res. 222(1), 2011
PMID: 21435357
Participation of the homing pigeon thalamofugal visual pathway in sun-compass associative learning.
Budzynski CA, Gagliardo A, Ioale P, Bingman VP., Eur. J. Neurosci. 15(1), 2002
PMID: 11860519
Budzynski CA, Gagliardo A, Ioale P, Bingman VP., Eur. J. Neurosci. 15(1), 2002
PMID: 11860519
Visual but not trigeminal mediation of magnetic compass information in a migratory bird.
Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H., Nature 461(7268), 2009
PMID: 19865170
Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H., Nature 461(7268), 2009
PMID: 19865170
Activation changes in zebra finch (Taeniopygia guttata) brain areas evoked by alterations of the earth magnetic field.
Keary N, Bischof HJ., PLoS ONE 7(6), 2012
PMID: 22679515
Keary N, Bischof HJ., PLoS ONE 7(6), 2012
PMID: 22679515
A visual pathway links brain structures active during magnetic compass orientation in migratory birds.
Heyers D, Manns M, Luksch H, Gunturkun O, Mouritsen H., PLoS ONE 2(9), 2007
PMID: 17895978
Heyers D, Manns M, Luksch H, Gunturkun O, Mouritsen H., PLoS ONE 2(9), 2007
PMID: 17895978
Lateralized activation of Cluster N in the brains of migratory songbirds.
Liedvogel M, Feenders G, Wada K, Troje NF, Jarvis ED, Mouritsen H., Eur. J. Neurosci. 25(4), 2007
PMID: 17331212
Liedvogel M, Feenders G, Wada K, Troje NF, Jarvis ED, Mouritsen H., Eur. J. Neurosci. 25(4), 2007
PMID: 17331212
Magnetoreception and its use in bird navigation.
Mouritsen H, Ritz T., Curr. Opin. Neurobiol. 15(4), 2005
PMID: 16006116
Mouritsen H, Ritz T., Curr. Opin. Neurobiol. 15(4), 2005
PMID: 16006116
Receptive field properties of single neurons in rat primary visual cortex.
Girman SV, Sauve Y, Lund RD., J. Neurophysiol. 82(1), 1999
PMID: 10400959
Girman SV, Sauve Y, Lund RD., J. Neurophysiol. 82(1), 1999
PMID: 10400959
Oblique effect: a neural basis in the visual cortex.
Li B, Peterson MR, Freeman RD., J. Neurophysiol. 90(1), 2003
PMID: 12611956
Li B, Peterson MR, Freeman RD., J. Neurophysiol. 90(1), 2003
PMID: 12611956
The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability.
Van Essen DC, Newsome WT, Maunsell JH., Vision Res. 24(5), 1984
PMID: 6740964
Van Essen DC, Newsome WT, Maunsell JH., Vision Res. 24(5), 1984
PMID: 6740964
Dominant vertical orientation processing without clustered maps: early visual brain dynamics imaged with voltage-sensitive dye in the pigeon visual Wulst.
Ng BS, Grabska-Barwinska A, Gunturkun O, Jancke D., J. Neurosci. 30(19), 2010
PMID: 20463233
Ng BS, Grabska-Barwinska A, Gunturkun O, Jancke D., J. Neurosci. 30(19), 2010
PMID: 20463233
Contralateral projections of the optic tectum in the zebra finch (Taenopygia guttata castanotis)
AUTHOR UNKNOWN, 1990
AUTHOR UNKNOWN, 1990
A direct connection between visual Wulst and Tectum opticum in the pigeon (Columba livia) demonstrated by horseradish peroxidase.
Bagnoli P, Grassi S, Magni F., Arch Ital Biol 118(1), 1980
PMID: 7458532
Bagnoli P, Grassi S, Magni F., Arch Ital Biol 118(1), 1980
PMID: 7458532
Extratelencephalic projections of the avian visual Wulst. A quantitative autoradiographic study in the pigeon Columbia livia.
Miceli D, Reperant J, Villalobos J, Dionne L., J Hirnforsch 28(1), 1987
PMID: 3598175
Miceli D, Reperant J, Villalobos J, Dionne L., J Hirnforsch 28(1), 1987
PMID: 3598175
Regulation of ipsilateral visual information within the tectofugal visual system in zebra finches.
Voss J, Bischof HJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(7), 2003
PMID: 12811488
Voss J, Bischof HJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(7), 2003
PMID: 12811488
Interocular suppression in cat striate cortex is not orientation selective.
Sengpiel F, Freeman TC, Blakemore C., Neuroreport 6(16), 1995
PMID: 8595210
Sengpiel F, Freeman TC, Blakemore C., Neuroreport 6(16), 1995
PMID: 8595210
Enucleation enhances ipsilateral flash evoked responses in the ectostriatum of the zebra finch (Taeniopygia guttata castanotis Gould).
Engelage J, Bischof HJ., Exp Brain Res 70(1), 1988
PMID: 3402570
Engelage J, Bischof HJ., Exp Brain Res 70(1), 1988
PMID: 3402570
Kritische Übersicht zur selektiven Sensomotorik des Blickens und multifovealen Spähens bei Vögeln
AUTHOR UNKNOWN, 1990
AUTHOR UNKNOWN, 1990
Integration of information from both eyes by single neurons of nucleus rotundus, ectostriatum and lateral neostriatum in the zebra finch (Taeniopygia guttata castanotis Gould).
Schmidt A, Bischof HJ., Brain Res. 923(1-2), 2001
PMID: 11743968
Schmidt A, Bischof HJ., Brain Res. 923(1-2), 2001
PMID: 11743968
Binocular integration in the mouse lateral geniculate nuclei.
Howarth M, Walmsley L, Brown TM., Curr. Biol. 24(11), 2014
PMID: 24856206
Howarth M, Walmsley L, Brown TM., Curr. Biol. 24(11), 2014
PMID: 24856206
Pigeon's eyes converge during feeding: evidence for frontal binocular fixation in a lateral-eyed bird.
Martinoya C, Le Houezec J, Bloch S., Neurosci. Lett. 45(3), 1984
PMID: 6539458
Martinoya C, Le Houezec J, Bloch S., Neurosci. Lett. 45(3), 1984
PMID: 6539458
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 25853253
PubMed | Europe PMC
Suchen in