Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans

Harder A, Möller A-K, Milz F, Neuhaus P, Walhorn V, Dierks T, Anselmetti D (2015)
Biophysical journal 108(7): 1709-1717.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In biological adhesion, the biophysical mechanism of specific biomolecular interaction can be divided in slip and catch bonds, respectively. Conceptually, slip bonds exhibit a reduced bond lifetime under increased external force and catch bonds, in contrast, exhibit an increased lifetime (for a certain force interval). Since 2003, a handful of biological systems have been identified to display catch bond properties. Upon investigating the specific interaction between the unique hydrophilic domain (HD) of the human cell-surface sulfatase Sulf1 against its physiological glycosaminoglycan (GAG) target heparan sulfate (HS) by single molecule force spectroscopy (SMFS), we found clear evidence of catch bond behavior in this system. The HD, ∼320 amino acids long with dominant positive charge, and its interaction with sulfated GAG-polymers were quantitatively investigated using atomic force microscopy (AFM) based force clamp spectroscopy (FCS) and dynamic force spectroscopy (DFS). In FCS experiments, we found that the catch bond character of HD against GAGs could be attributed to the GAG 6-O-sulfation site whereas only slip bond interaction can be observed in a GAG system where this site is explicitly lacking. We interpreted the binding data within the theoretical framework of a two state two path model, where two slip bonds are coupled forming a double-well interaction potential with an energy difference of ΔE ≈ 9 kBT and a compliance length of Δx ≈ 3.2 nm. Additional DFS experiments support this assumption and allow identification of these two coupled slip-bond states that behave consistently within the Kramers-Bell-Evans model of force-mediated dissociation.
Biophysical journal
Page URI


Harder A, Möller A-K, Milz F, et al. Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans. Biophysical journal. 2015;108(7):1709-1717.
Harder, A., Möller, A. - K., Milz, F., Neuhaus, P., Walhorn, V., Dierks, T., & Anselmetti, D. (2015). Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans. Biophysical journal, 108(7), 1709-1717. doi:10.1016/j.bpj.2015.02.028
Harder, Alexander, Möller, Ann-Kristin, Milz, Fabian, Neuhaus, Phillipp, Walhorn, Volker, Dierks, Thomas, and Anselmetti, Dario. 2015. “Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans”. Biophysical journal 108 (7): 1709-1717.
Harder, A., Möller, A. - K., Milz, F., Neuhaus, P., Walhorn, V., Dierks, T., and Anselmetti, D. (2015). Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans. Biophysical journal 108, 1709-1717.
Harder, A., et al., 2015. Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans. Biophysical journal, 108(7), p 1709-1717.
A. Harder, et al., “Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans”, Biophysical journal, vol. 108, 2015, pp. 1709-1717.
Harder, A., Möller, A.-K., Milz, F., Neuhaus, P., Walhorn, V., Dierks, T., Anselmetti, D.: Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans. Biophysical journal. 108, 1709-1717 (2015).
Harder, Alexander, Möller, Ann-Kristin, Milz, Fabian, Neuhaus, Phillipp, Walhorn, Volker, Dierks, Thomas, and Anselmetti, Dario. “Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans”. Biophysical journal 108.7 (2015): 1709-1717.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Single-Molecule Unbinding Forces between the Polysaccharide Hyaluronan and Its Binding Proteins.
Bano F, Tammi MI, Kang DW, Harris EN, Richter RP., Biophys J 114(12), 2018
PMID: 29925027
Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality.
Walhorn V, Möller AK, Bartz C, Dierks T, Anselmetti D., Sci Rep 8(1), 2018
PMID: 30442949
Phenomenological and microscopic theories for catch bonds.
Chakrabarti S, Hinczewski M, Thirumalai D., J Struct Biol 197(1), 2017
PMID: 27046010
The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate.
El Masri R, Seffouh A, Lortat-Jacob H, Vivès RR., Glycoconj J 34(3), 2017
PMID: 27812771
Interactions between the breast cancer-associated MUC1 mucins and C-type lectin characterized by optical tweezers.
Hadjialirezaei S, Picco G, Beatson R, Burchell J, Stokke BT, Sletmoen M., PLoS One 12(4), 2017
PMID: 28414807
Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy.
Håti AG, Aachmann FL, Stokke BT, Skjåk-Bræk G, Sletmoen M., PLoS One 10(10), 2015
PMID: 26496653

61 References

Daten bereitgestellt von Europe PubMed Central.

Models for the specific adhesion of cells to cells.
Bell GI., Science 200(4342), 1978
PMID: 347575
The reaction-limited kinetics of membrane-to-surface adhesion and detachment.
Dembo M, Torney DC, Saxman K, Hammer D., Proc. R. Soc. Lond., B, Biol. Sci. 234(1274), 1988
PMID: 2901109
Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy.
Fritz J, Katopodis AG, Kolbinger F, Anselmetti D., Proc. Natl. Acad. Sci. U.S.A. 95(21), 1998
PMID: 9770478
Direct observation of catch bonds involving cell-adhesion molecules.
Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C., Nature 423(6936), 2003
PMID: 12736689
Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.
Anselmetti D, Bartels FW, Becker A, Decker B, Eckel R, McIntosh M, Mattay J, Plattner P, Ros R, Schafer C, Sewald N., Langmuir 24(4), 2007
PMID: 18062710
Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti.
Bartels FW, McIntosh M, Fuhrmann A, Metzendorf C, Plattner P, Sewald N, Anselmetti D, Ros R, Becker A., Biophys. J. 92(12), 2007
PMID: 17384071
Specific antigen/antibody interactions measured by force microscopy.
Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Guntherodt HJ., Biophys. J. 70(5), 1996
PMID: 9172770
Supramolecular chemistry at the single-molecule level.
Eckel R, Ros R, Decker B, Mattay J, Anselmetti D., Angew. Chem. Int. Ed. Engl. 44(3), 2005
PMID: 15624136
Single-molecule experiments in synthetic biology: an approach to the affinity ranking of DNA-binding peptides.
Eckel R, Wilking SD, Becker A, Sewald N, Ros R, Anselmetti D., Angew. Chem. Int. Ed. Engl. 44(25), 2005
PMID: 15906400
Adhesion forces between individual ligand-receptor pairs.
Florin EL, Moy VT, Gaub HE., Science 264(5157), 1994
PMID: 8153628
Quantitative analysis of single-molecule RNA-protein interaction.
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R., Biophys. J. 96(12), 2009
PMID: 19527663
Single-molecule force spectroscopy of cartilage aggrecan self-adhesion.
Harder A, Walhorn V, Dierks T, Fernandez-Busquets X, Anselmetti D., Biophys. J. 99(10), 2010
PMID: 21081100
Detection and localization of individual antibody-antigen recognition events by atomic force microscopy.
Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H., Proc. Natl. Acad. Sci. U.S.A. 93(8), 1996
PMID: 8622961
Intermolecular forces and energies between ligands and receptors.
Moy VT, Florin EL, Gaub HE., Science 266(5183), 1994
PMID: 7939660
Single-molecule force spectroscopy of supramolecular heterodimeric capsules.
Schroder T, Geisler T, Walhorn V, Schnatwinkel B, Anselmetti D, Mattay J., Phys Chem Chem Phys 12(36), 2010
PMID: 20661519
Functional characterization of a supramolecular affinity switch at the single molecule level.
Walhorn V, Schafer C, Schroder T, Mattay J, Anselmetti D., Nanoscale 3(11), 2011
PMID: 22009325
Single-molecule experiments to elucidate the minimal requirement for DNA recognition by transcription factor epitopes.
Wollschlager K, Gaus K, Kornig A, Eckel R, Wilking SD, McIntosh M, Majer Z, Becker A, Ros R, Anselmetti D, Sewald N., Small 5(4), 2009
PMID: 19199332
Bacterial adhesion to target cells enhanced by shear force.
Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV., Cell 109(7), 2002
PMID: 12110187
Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction.
Guo B, Guilford WH., Proc. Natl. Acad. Sci. U.S.A. 103(26), 2006
PMID: 16785439
Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF.
Yago T, Lou J, Wu T, Yang J, Miner JJ, Coburn L, Lopez JA, Cruz MA, Dong JF, McIntire LV, McEver RP, Zhu C., J. Clin. Invest. 118(9), 2008
PMID: 18725999
Demonstration of catch bonds between an integrin and its ligand.
Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C., J. Cell Biol. 185(7), 2009
PMID: 19564406
Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds.
Barsegov V, Thirumalai D., Proc. Natl. Acad. Sci. U.S.A. 102(6), 2005
PMID: 15701706
Selectin catch-slip kinetics encode shear threshold adhesive behavior of rolling leukocytes.
Beste MT, Hammer DA., Proc. Natl. Acad. Sci. U.S.A. 105(52), 2008
PMID: 19095798
Catch-bond behavior of bacteria binding by slip bonds.
Bjornham O, Axner O., Biophys. J. 99(5), 2010
PMID: 20816044
Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond.
Evans E, Leung A, Heinrich V, Zhu C., Proc. Natl. Acad. Sci. U.S.A. 101(31), 2004
PMID: 15277675
A structure-based sliding-rebinding mechanism for catch bonds.
Lou J, Zhu C., Biophys. J. 92(5), 2006
PMID: 17142266
The two-pathway model of the biological catch-bond as a limit of the allosteric model.
Pereverzev YV, Prezhdo E, Sokurenko EV., Biophys. J. 101(8), 2011
PMID: 22004757
Force-induced deformations and stability of biological bonds.
Pereverzev YV, Prezhdo OV., Phys Rev E Stat Nonlin Soft Matter Phys 73(5 Pt 1), 2006
PMID: 16802910
The two-pathway model for the catch-slip transition in biological adhesion.
Pereverzev YV, Prezhdo OV, Forero M, Sokurenko EV, Thomas WE., Biophys. J. 89(3), 2005
PMID: 15951391
Single-molecule rupture dynamics on multidimensional landscapes.
Suzuki Y, Dudko OK., Phys. Rev. Lett. 104(4), 2010
PMID: 20366741
Catch-bond model derived from allostery explains force-activated bacterial adhesion.
Thomas W, Forero M, Yakovenko O, Nilsson L, Vicini P, Sokurenko E, Vogel V., Biophys. J. 90(3), 2005
PMID: 16272438
Dynamic competition between catch and slip bonds in selectins bound to ligands.
Barsegov V, Thirumalai D., J Phys Chem B 110(51), 2006
PMID: 17181300
The heparanome--the enigma of encoding and decoding heparan sulfate sulfation.
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T., J. Biotechnol. 129(2), 2007
PMID: 17337080
Post-Synthetic Regulation of HS Structure: The Yin and Yang of the Sulfs in Cancer.
Vives RR, Seffouh A, Lortat-Jacob H., Front Oncol 3(), 2014
PMID: 24459635
Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase.
Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr., Science 293(5535), 2001
PMID: 11533491
Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans.
Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD., J. Biol. Chem. 277(51), 2002
PMID: 12368295
Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain.
Frese MA, Milz F, Dick M, Lamanna WC, Dierks T., J. Biol. Chem. 284(41), 2009
PMID: 19666466
Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate.
Milz F, Harder A, Neuhaus P, Breitkreuz-Korff O, Walhorn V, Lubke T, Anselmetti D, Dierks T., Biochim. Biophys. Acta 1830(11), 2013
PMID: 23891937
Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2.
Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP Jr., J. Biol. Chem. 281(8), 2005
PMID: 16377625
Proteoglycan mechanics studied by single-molecule force spectroscopy of allotypic cell adhesion glycans.
Garcia-Manyes S, Bucior I, Ros R, Anselmetti D, Sanz F, Burger MM, Fernandez-Busquets X., J. Biol. Chem. 281(9), 2005
PMID: 16373355
Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges.
Jarchow J, Fritz J, Anselmetti D, Calabro A, Hascall VC, Gerosa D, Burger MM, Fernandez-Busquets X., J. Struct. Biol. 132(2), 2000
PMID: 11162731
Calibration of atomic-force microscope tips
Hutter J.L., Bechhoefer J.., 1993
Catch bonds in adhesion.
Thomas W., Annu Rev Biomed Eng 10(), 2008
PMID: 18647111
Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy
Hegner M., Wagner P., Semenza G.., 1993
Regulation of catch bonds by rate of force application.
Sarangapani KK, Qian J, Chen W, Zarnitsyna VI, Mehta P, Yago T, McEver RP, Zhu C., J. Biol. Chem. 286(37), 2011
PMID: 21775439
Dynamic response of adhesion complexes: beyond the single-path picture.
Bartolo D, Derenyi I, Ajdari A., Phys Rev E Stat Nonlin Soft Matter Phys 65(5 Pt 1), 2002
PMID: 12059596
Biophysics of selectin-ligand interactions in inflammation and cancer.
Cheung LS, Raman PS, Balzer EM, Wirtz D, Konstantopoulos K., Phys Biol 8(1), 2011
PMID: 21301059
Anomalously increased lifetimes of biological complexes at zero force due to the protein-water interface.
Pereverzev YV, Prezhdo OV, Sokurenko EV., J Phys Chem B 112(36), 2008
PMID: 18710275
Long-timescale molecular dynamics simulations of protein structure and function.
Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE., Curr. Opin. Struct. Biol. 19(2), 2009
PMID: 19361980
Strongly enhanced field-dependent single-molecule electroluminescence.
Lee TH, Gonzalez JI, Dickson RM., Proc. Natl. Acad. Sci. U.S.A. 99(16), 2002
PMID: 12149468
Folding at the speed limit.
Yang WY, Gruebele M., Nature 423(6936), 2003
PMID: 12736690
Dynamic strength of molecular adhesion bonds.
Evans E, Ritchie K., Biophys. J. 72(4), 1997
PMID: 9083660
Brownian motion in a field of force and the diffusion model of chemical reactions
Kramers H.A.., 1940
Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds.
Lee CY, Lou J, Wen KK, McKane M, Eskin SG, Ono S, Chien S, Rubenstein PA, Zhu C, McIntire LV., Proc. Natl. Acad. Sci. U.S.A. 110(13), 2013
PMID: 23460697
Ideal, catch, and slip bonds in cadherin adhesion.
Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S., Proc. Natl. Acad. Sci. U.S.A. 109(46), 2012
PMID: 23112161
HSulf sulfatases catalyze processive and oriented 6-O-desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity.
Seffouh A, Milz F, Przybylski C, Laguri C, Oosterhof A, Bourcier S, Sadir R, Dutkowski E, Daniel R, van Kuppevelt TH, Dierks T, Lortat-Jacob H, Vives RR., FASEB J. 27(6), 2013
PMID: 23457216

Bergethon P.R.., 2000
Multiprotein signalling complexes: regional assembly on heparan sulphate.
Gallagher JT., Biochem. Soc. Trans. 34(Pt 3), 2006
PMID: 16709181
Fibroblast growth factor-2 antagonist activity and angiostatic capacity of sulfated Escherichia coli K5 polysaccharide derivatives.
Leali D, Belleri M, Urbinati C, Coltrini D, Oreste P, Zoppetti G, Ribatti D, Rusnati M, Presta M., J. Biol. Chem. 276(41), 2001
PMID: 11473122

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 25863062
PubMed | Europe PMC

Suchen in

Google Scholar