LOFAR sparse image reconstruction

Garsden H, Girard JN, Starck JL, Corbel S, Tasse C, Woiselle A, McKean JP, van Amesfoort AS, Anderson J, Avruch IM, Beck R, et al. (2015)
Astronomy and Astrophysics 575: A90.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Garsden, H.; Girard, J. N.; Starck, J. L.; Corbel, S.; Tasse, C.; Woiselle, A.; McKean, J. P.; van Amesfoort, A. S.; Anderson, J.; Avruch, I. M.; Beck, R.; Bentum, M. J.
Alle
Abstract / Bemerkung
Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods. We implemented a Sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN based methods (CLEAN and MS CLEAN) with simulated and real LOFAR data. Results. We show that 0 sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; performs much better on extended objects (the root mean square error is reduced by a factor of up to 10): and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets), This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKA.
Stichworte
techniques: image; techniques: interferometric; methods: numerical; processing
Erscheinungsjahr
2015
Zeitschriftentitel
Astronomy and Astrophysics
Band
575
Art.-Nr.
A90
ISSN
0004-6361
Page URI
https://pub.uni-bielefeld.de/record/2731098

Zitieren

Garsden H, Girard JN, Starck JL, et al. LOFAR sparse image reconstruction. Astronomy and Astrophysics. 2015;575: A90.
Garsden, H., Girard, J. N., Starck, J. L., Corbel, S., Tasse, C., Woiselle, A., McKean, J. P., et al. (2015). LOFAR sparse image reconstruction. Astronomy and Astrophysics, 575, A90. doi:10.1051/0004-6361/201424504
Garsden, H., Girard, J. N., Starck, J. L., Corbel, S., Tasse, C., Woiselle, A., McKean, J. P., et al. 2015. “LOFAR sparse image reconstruction”. Astronomy and Astrophysics 575: A90.
Garsden, H., Girard, J. N., Starck, J. L., Corbel, S., Tasse, C., Woiselle, A., McKean, J. P., van Amesfoort, A. S., Anderson, J., Avruch, I. M., et al. (2015). LOFAR sparse image reconstruction. Astronomy and Astrophysics 575:A90.
Garsden, H., et al., 2015. LOFAR sparse image reconstruction. Astronomy and Astrophysics, 575: A90.
H. Garsden, et al., “LOFAR sparse image reconstruction”, Astronomy and Astrophysics, vol. 575, 2015, : A90.
Garsden, H., Girard, J.N., Starck, J.L., Corbel, S., Tasse, C., Woiselle, A., McKean, J.P., van Amesfoort, A.S., Anderson, J., Avruch, I.M., Beck, R., Bentum, M.J., Best, P., Breitling, F., Broderick, J., Brueggen, M., Butcher, H.R., Ciardi, B., de Gasperin, F., de Geus, E., de Vos, M., Duscha, S., Eisloeffel, J., Engels, D., Falcke, H., Fallows, R.A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Griessmeier, J., Gunst, A.W., Hassall, T.E., Heald, G., Hoeft, M., Hoerandel, J., van der Horst, A., Juette, E., Karastergiou, A., Kondratiev, V.I., Kramer, M., Kuniyoshi, M., Kuper, G., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., Mulcahy, D.D., Munk, H., Norden, M.J., Orru, E., Paas, H., Pandey-Pommier, M., Pandey, V.N., Pietka, G., Pizzo, R., Polatidis, A.G., Renting, A., Roettgering, H., Rowlinson, A., Schwarz, D., Sluman, J., Smirnov, O., Stappers, B.W., Steinmetz, M., Stewart, A., Swinbank, J., Tagger, M., Tang, Y., Tasse, C., Thoudam, S., Toribio, C., Vermeulen, R., Vocks, C., van Weeren, R.J., Wijnholds, S.J., Wise, M.W., Wucknitz, O., Yatawatta, S., Zarka, P., Zensus, A.: LOFAR sparse image reconstruction. Astronomy and Astrophysics. 575, : A90 (2015).
Garsden, H., Girard, J. N., Starck, J. L., Corbel, S., Tasse, C., Woiselle, A., McKean, J. P., van Amesfoort, A. S., Anderson, J., Avruch, I. M., Beck, R., Bentum, M. J., Best, P., Breitling, F., Broderick, J., Brueggen, M., Butcher, H. R., Ciardi, B., de Gasperin, F., de Geus, E., de Vos, M., Duscha, S., Eisloeffel, J., Engels, D., Falcke, H., Fallows, R. A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M. A., Griessmeier, J., Gunst, A. W., Hassall, T. E., Heald, G., Hoeft, M., Hoerandel, J., van der Horst, A., Juette, E., Karastergiou, A., Kondratiev, V. I., Kramer, M., Kuniyoshi, M., Kuper, G., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., Mulcahy, D. D., Munk, H., Norden, M. J., Orru, E., Paas, H., Pandey-Pommier, M., Pandey, V. N., Pietka, G., Pizzo, R., Polatidis, A. G., Renting, A., Roettgering, H., Rowlinson, A., Schwarz, Dominik, Sluman, J., Smirnov, O., Stappers, B. W., Steinmetz, M., Stewart, A., Swinbank, J., Tagger, M., Tang, Y., Tasse, C., Thoudam, S., Toribio, C., Vermeulen, R., Vocks, C., van Weeren, R. J., Wijnholds, S. J., Wise, M. W., Wucknitz, O., Yatawatta, S., Zarka, P., and Zensus, A. “LOFAR sparse image reconstruction”. Astronomy and Astrophysics 575 (2015): A90.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar