Time to flower: interplay between photoperiod and the circadian clock

Johansson M, Staiger D (2015)
Journal of Experimental Botany 66(3): 719-730.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Plants precisely time the onset of flowering to ensure reproductive success. A major factor in seasonal control of flowering time is the photoperiod. The length of the daily light period is measured by the circadian clock in leaves, and a signal is conveyed to the shoot apex to initiate floral transition accordingly. In the last two decades, the molecular players in the photoperiodic pathway have been identified in Arabidopsis thaliana. Moreover, the intricate connections between the circadian clockwork and components of the photoperiodic pathway have been unravelled. In particular, the molecular basis of time-of-day-dependent sensitivity to floral stimuli, as predicted by Bünning and Pittendrigh, has been elucidated. This review covers recent insights into the molecular mechanisms underlying clock regulation of photoperiodic responses and the integration of the photoperiodic pathway into the flowering time network in Arabidopsis. Furthermore, examples of conservation and divergence in photoperiodic flower induction in other plant species are discussed.
Erscheinungsjahr
2015
Zeitschriftentitel
Journal of Experimental Botany
Band
66
Ausgabe
3
Seite(n)
719-730
ISSN
1460-2431
Page URI
https://pub.uni-bielefeld.de/record/2729806

Zitieren

Johansson M, Staiger D. Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany. 2015;66(3):719-730.
Johansson, M., & Staiger, D. (2015). Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany, 66(3), 719-730. doi:10.1093/jxb/eru441
Johansson, Mikael, and Staiger, Dorothee. 2015. “Time to flower: interplay between photoperiod and the circadian clock”. Journal of Experimental Botany 66 (3): 719-730.
Johansson, M., and Staiger, D. (2015). Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany 66, 719-730.
Johansson, M., & Staiger, D., 2015. Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany, 66(3), p 719-730.
M. Johansson and D. Staiger, “Time to flower: interplay between photoperiod and the circadian clock”, Journal of Experimental Botany, vol. 66, 2015, pp. 719-730.
Johansson, M., Staiger, D.: Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany. 66, 719-730 (2015).
Johansson, Mikael, and Staiger, Dorothee. “Time to flower: interplay between photoperiod and the circadian clock”. Journal of Experimental Botany 66.3 (2015): 719-730.

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
Switching genetic effects of the flowering time gene Hd1 in LD conditions by Ghd7 and OsPRR37 in rice.
Fujino K, Yamanouchi U, Nonoue Y, Obara M, Yano M., Breed Sci 69(1), 2019
PMID: 31086490
Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues.
Wiegmann M, Maurer A, Pham A, March TJ, Al-Abdallat A, Thomas WTB, Bull HJ, Shahid M, Eglinton J, Baum M, Flavell AJ, Tester M, Pillen K., Sci Rep 9(1), 2019
PMID: 31024028
Identification of flowering-time genes in mast flowering plants using De Novo transcriptomic analysis.
Samarth, Lee R, Song J, Macknight RC, Jameson PE., PLoS One 14(8), 2019
PMID: 31412034
Different copies of SENSITIVITY TO RED LIGHT REDUCED 1 show strong subfunctionalization in Brassica napus.
Schiessl S, Williams N, Specht P, Staiger D, Johansson M., BMC Plant Biol 19(1), 2019
PMID: 31438864
Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping.
Herzig P, Maurer A, Draba V, Sharma R, Draicchio F, Bull H, Milne L, Thomas WTB, Flavell AJ, Pillen K., J Exp Bot 69(7), 2018
PMID: 29361127
Circadian Rhythms and Reproductive Phenology Covary in a Natural Plant Population.
Salmela MJ, McMinn RL, Guadagno CR, Ewers BE, Weinig C., J Biol Rhythms 33(3), 2018
PMID: 29589511
Genome-Wide Association Study in Pseudo-F2 Populations of Switchgrass Identifies Genetic Loci Affecting Heading and Anthesis Dates.
Taylor M, Tornqvist CE, Zhao X, Grabowski P, Doerge R, Ma J, Volenec J, Evans J, Ramstein GP, Sanciangco MD, Buell CR, Casler MD, Jiang Y., Front Plant Sci 9(), 2018
PMID: 30271414
Ambient Temperature-Responsive Mechanisms Coordinate Regulation of Flowering Time.
Susila H, Nasim Z, Ahn JH., Int J Mol Sci 19(10), 2018
PMID: 30332820
Genome-wide associations with flowering time in switchgrass using exome-capture sequencing data.
Grabowski PP, Evans J, Daum C, Deshpande S, Barry KW, Kennedy M, Ramstein G, Kaeppler SM, Buell CR, Jiang Y, Casler MD., New Phytol 213(1), 2017
PMID: 27443672
Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network.
Alhindi T, Zhang Z, Ruelens P, Coenen H, Degroote H, Iraci N, Geuten K., Sci Rep 7(), 2017
PMID: 28337996
The Divergence of Flowering Time Modulated by FT/TFL1 Is Independent to Their Interaction and Binding Activities.
Wang Z, Yang R, Devisetty UK, Maloof JN, Zuo Y, Li J, Shen Y, Zhao J, Bao M, Ning G., Front Plant Sci 8(), 2017
PMID: 28533784
The common transcriptional subnetworks of the grape berry skin in the late stages of ripening.
Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, Cramer GR., BMC Plant Biol 17(1), 2017
PMID: 28558655
TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis.
Kubota A, Ito S, Shim JS, Johnson RS, Song YH, Breton G, Goralogia GS, Kwon MS, Laboy Cintrón D, Koyama T, Ohme-Takagi M, Pruneda-Paz JL, Kay SA, MacCoss MJ, Imaizumi T., PLoS Genet 13(6), 2017
PMID: 28628608
CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis.
Goralogia GS, Liu TK, Zhao L, Panipinto PM, Groover ED, Bains YS, Imaizumi T., Plant J 92(2), 2017
PMID: 28752516
Photoperiodism dynamics during the domestication and improvement of soybean.
Zhang SR, Wang H, Wang Z, Ren Y, Niu L, Liu J, Liu B., Sci China Life Sci 60(12), 2017
PMID: 28942538
Tissue-specific regulation of flowering by photoreceptors.
Endo M, Araki T, Nagatani A., Cell Mol Life Sci 73(4), 2016
PMID: 26621669
The tae-miR408-Mediated Control of TaTOC1 Genes Transcription Is Required for the Regulation of Heading Time in Wheat.
Zhao XY, Hong P, Wu JY, Chen XB, Ye XG, Pan YY, Wang J, Zhang XS., Plant Physiol 170(3), 2016
PMID: 26768600
A Compact Model for the Complex Plant Circadian Clock.
De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze D., Front Plant Sci 7(), 2016
PMID: 26904049
BRR2a Affects Flowering Time via FLC Splicing.
Mahrez W, Shin J, Muñoz-Viana R, Figueiredo DD, Trejo-Arellano MS, Exner V, Siretskiy A, Gruissem W, Köhler C, Hennig L., PLoS Genet 12(4), 2016
PMID: 27100965
De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering.
Nie S, Li C, Xu L, Wang Y, Huang D, Muleke EM, Sun X, Xie Y, Liu L., BMC Genomics 17(), 2016
PMID: 27216755
A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.
Sun P, Miao H, Yu X, Jia C, Liu J, Zhang J, Wang J, Wang Z, Wang A, Xu B, Jin Z., PLoS One 11(8), 2016
PMID: 27486844
Light Intensity and Floral Transition: Chloroplast Says "Time to Flower!"
Susila H, Jin S, Ahn JH., Mol Plant 9(12), 2016
PMID: 27793786
Circadian Clock Genes Universally Control Key Agricultural Traits.
Bendix C, Marshall CM, Harmon FG., Mol Plant 8(8), 2015
PMID: 25772379
A theoretical study on seasonality.
Schmal C, Myung J, Herzel H, Bordyugov G., Front Neurol 6(), 2015
PMID: 25999912
Insight into a Physiological Role for the EC Night-Time Repressor in the Arabidopsis Circadian Clock.
Mizuno T, Kitayama M, Takayama C, Yamashino T., Plant Cell Physiol 56(9), 2015
PMID: 26108788
Genome-Wide Comparative Analysis of Flowering-Related Genes in Arabidopsis, Wheat, and Barley.
Peng FY, Hu Z, Yang RC., Int J Plant Genomics 2015(), 2015
PMID: 26435710
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.
van Heerwaarden J, van Zanten M, Kruijer W., PLoS Genet 11(10), 2015
PMID: 26496492

151 References

Daten bereitgestellt von Europe PubMed Central.

FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T., Science 309(5737), 2005
PMID: 16099979
cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis.
Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F., Plant Cell 22(5), 2010
PMID: 20472817
A divergent external loop confers antagonistic activity on floral regulators FT and TFL1.
Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D., EMBO J. 25(3), 2006
PMID: 16424903
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA., Science 293(5531), 2001
PMID: 11486091
The genetic basis of flowering responses to seasonal cues.
Andres F, Coupland G., Nat. Rev. Genet. 13(9), 2012
PMID: 22898651
EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression.
Boden SA, Weiss D, Ross JJ, Davies NW, Trevaskis B, Chandler PM, Swain SM., Plant Cell 26(4), 2014
PMID: 24781117
Linkage and association mapping of Arabidopsis thaliana flowering time in nature.
Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F., PLoS Genet. 6(5), 2010
PMID: 20463887
Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion
Bünning, Berichte der Deutschen Botanischen Gessellschaft 54(), 1936
A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis.
Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y., Plant Physiol. 145(1), 2007
PMID: 17631525
Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS
Campoli, The Plant Journal 71(), 2011
Emerging design principles in the Arabidopsis circadian clock.
Carre I, Veflingstad SR., Semin. Cell Dev. Biol. 24(5), 2013
PMID: 23597453
New facts in support of the hormonal theory of plant development
Chailakhyan, Compte Rendu de l’Academy des Sciencesde L’ URSS 13(), 1936
Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod.
Chen A, Li C, Hu W, Lau MY, Lin H, Rockwell NC, Martin SS, Jernstedt JA, Lagarias JC, Dubcovsky J., Proc. Natl. Acad. Sci. U.S.A. 111(28), 2014
PMID: 24961368
FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis.
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G., Science 316(5827), 2007
PMID: 17446353
The B2 flowering time locus of beet encodes a zinc finger transcription factor.
Dally N, Xiao K, Holtgrawe D, Jung C., Proc. Natl. Acad. Sci. U.S.A. 111(28), 2014
PMID: 24965366
Signs of the time: environmental input to the circadian clock.
Devlin PF., J. Exp. Bot. 53(374), 2002
PMID: 12096092
Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis.
Dixon LE, Knox K, Kozma-Bognar L, Southern MM, Pokhilko A, Millar AJ., Curr. Biol. 21(2), 2011
PMID: 21236675
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.
Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA., Science 309(5734), 2005
PMID: 16040710
Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1.
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A., Genes Dev. 18(8), 2004
PMID: 15078816
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock.
Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ., Plant Cell 18(3), 2006
PMID: 16473970
PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS.
Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A., Proc. Natl. Acad. Sci. U.S.A. 110(44), 2013
PMID: 24127609
Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons.
Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA., Proc. Natl. Acad. Sci. U.S.A. 109(21), 2012
PMID: 22566625
Rethinking transcriptional activation in the Arabidopsis circadian clock.
Fogelmark K, Troein C., PLoS Comput. Biol. 10(7), 2014
PMID: 25033214
Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response.
Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G., Dev. Cell 17(1), 2009
PMID: 19619493
GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains.
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J., EMBO J. 18(17), 1999
PMID: 10469647
Effects of the relative length of day and night and other factors of the environment on growth and reproduction in plants
Garner, Journal of Agricultural Reseach 18(), 1920
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA., Proc. Natl. Acad. Sci. U.S.A. 109(8), 2012
PMID: 22315425
Circadian rhythms confer a higher level of fitness to Arabidopsis plants.
Green RM, Tingay S, Wang ZY, Tobin EM., Plant Physiol. 129(2), 2002
PMID: 12068102
A single amino acid converts a repressor to an activator of flowering.
Hanzawa Y, Money T, Bradley D., Proc. Natl. Acad. Sci. U.S.A. 102(21), 2005
PMID: 15894619
Adaptation of photoperiodic control pathways produces short-day flowering in rice.
Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K., Nature 422(6933), 2003
PMID: 12700762
Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs.
Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJ, Weller JL., Plant Physiol. 144(2), 2007
PMID: 17468223
The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod.
Hecht V, Laurie RE, Vander Schoor JK, Ridge S, Knowles CL, Liew LC, Sussmilch FC, Murfet IC, Macknight RC, Weller JL., Plant Cell 23(1), 2011
PMID: 21282524
EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock.
Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Goncalves J, Davis SJ., Plant Cell 24(2), 2012
PMID: 22327739
Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant.
Hicks KA, Millar AJ, Carre IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA., Science 274(5288), 1996
PMID: 8864121
The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums.
Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, Hisamatsu T., Proc. Natl. Acad. Sci. U.S.A. 110(42), 2013
PMID: 24082137
Accurate timekeeping is controlled by a cycling activator in Arabidopsis.
Hsu PY, Devisetty UK, Harmer SL., Elife 2(), 2013
PMID: 23638299
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.
Huang W, Perez-Garcia P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P., Science 336(6077), 2012
PMID: 22403178
FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis.
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA., Science 309(5732), 2005
PMID: 16002617
Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice.
Ishikawa R, Aoki M, Kurotani K, Yokoi S, Shinomura T, Takano M, Shimamoto K., Mol. Genet. Genomics 285(6), 2011
PMID: 21512732
FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis.
Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, Imaizumi T., Proc. Natl. Acad. Sci. U.S.A. 109(9), 2012
PMID: 22334645
FT protein acts as a long-range signal in Arabidopsis.
Jaeger KE, Wigge PA., Curr. Biol. 17(12), 2007
PMID: 17540569
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response.
Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G., EMBO J. 27(8), 2008
PMID: 18388858
Flowering time control and applications in plant breeding.
Jung C, Muller AE., Trends Plant Sci. 14(10), 2009
PMID: 19716745
The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis.
Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM., Plant Cell 19(9), 2007
PMID: 17890372
The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA.
Kim J, Geng R, Gallenstein RA, Somers DE., Development 140(19), 2013
PMID: 24004949
ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light.
Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE., Nature 449(7160), 2007
PMID: 17704763
ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration.
Kim Y, Lim J, Yeom M, Kim H, Kim J, Wang L, Kim WY, Somers DE, Nam HG., Cell Rep 3(3), 2013
PMID: 23523352
A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.
Koornneef M, Hanhart CJ, van der Veen JH., Mol. Gen. Genet. 229(1), 1991
PMID: 1896021
Transcription factor PIF4 controls the thermosensory activation of flowering.
Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA., Nature 484(7393), 2012
PMID: 22437497
The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis.
Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ., Planta 228(5), 2008
PMID: 18600346
Die photoperiodische Reaktion von Hyoscyamus niger
Lang, Planta 33(), 1943
Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability.
Laubinger S, Marchal V, Le Gourrierec J, Gentilhomme J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U., Development 133(16), 2006
PMID: 16854975
A repressor complex governs the integration of flowering signals in Arabidopsis.
Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H., Dev. Cell 15(1), 2008
PMID: 18606145
The B-box family gene STO (BBX24) in Arabidopsis thaliana regulates flowering time in different pathways.
Li F, Sun J, Wang D, Bai S, Clarke AK, Holm M., PLoS ONE 9(2), 2014
PMID: 24498334
Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis.
Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau OS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H., Nat. Cell Biol. 13(5), 2011
PMID: 21499259
Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism.
Lian HL, He SB, Zhang YC, Zhu DM, Zhang JY, Jia KP, Sun SX, Li L, Yang HQ., Genes Dev. 25(10), 2011
PMID: 21511872
DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock.
Liew LC, Hecht V, Laurie RE, Knowles CL, Vander Schoor JK, Macknight RC, Weller JL., Plant Cell 21(10), 2009
PMID: 19843842
The Pea Photoperiod Response Gene STERILE NODES Is an Ortholog of LUX ARRHYTHMO.
Liew LC, Hecht V, Sussmilch FC, Weller JL., Plant Physiol. 165(2), 2014
PMID: 24706549
Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.
Liu H, Wang Q, Liu Y, Zhao X, Imaizumi T, Somers DE, Tobin EM, Lin C., Proc. Natl. Acad. Sci. U.S.A. 110(43), 2013
PMID: 24101505
Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C., Science 322(5907), 2008
PMID: 18988809
FTIP1 is an essential regulator required for florigen transport.
Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Wang Y, Yu H., PLoS Biol. 10(4), 2012
PMID: 22529749
A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis.
Lohr B, Streitner C, Steffen A, Lange T, Staiger D., Mol. Biol. Rep. 41(1), 2013
PMID: 24281950
CCA1 and ELF3 Interact in the control of hypocotyl length and flowering time in Arabidopsis.
Lu SX, Webb CJ, Knowles SM, Kim SH, Wang Z, Tobin EM., Plant Physiol. 158(2), 2011
PMID: 22190341
Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana.
Mas P, Kim WY, Somers DE, Kay SA., Nature 426(6966), 2003
PMID: 14654842
Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis.
Mathieu J, Warthmann N, Kuttner F, Schmid M., Curr. Biol. 17(12), 2007
PMID: 17540570
Repression of flowering by the miR172 target SMZ.
Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M., PLoS Biol. 7(7), 2009
PMID: 19582143
Beyond Arabidopsis: the circadian clock in non-model plant species.
McClung CR., Semin. Cell Dev. Biol. 24(5), 2013
PMID: 23466287
DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days.
Morris K, Thornber S, Codrai L, Richardson C, Craig A, Sadanandom A, Thomas B, Jackson S., Plant Cell 22(4), 2010
PMID: 20435904
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H., Plant Cell 22(3), 2010
PMID: 20233950
Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering
Nakamura, Nature Commununications 5(), 2014
Phytochrome C is a key factor controlling long-day flowering in barley.
Nishida H, Ishihara D, Ishii M, Kaneko T, Kawahigashi H, Akashi Y, Saisho D, Tanaka K, Handa H, Takeda K, Kato K., Plant Physiol. 163(2), 2013
PMID: 24014575
BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis.
Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, Araki T., Plant Cell 25(4), 2013
PMID: 23613197
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth.
Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farre EM, Kay SA., Nature 475(7356), 2011
PMID: 21753751
CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums.
Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T., J. Exp. Bot. 63(3), 2011
PMID: 22140240
TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis
Osnato, Nature Communictions 3(), 2012
Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley.
Pankin A, Campoli C, Dong X, Kilian B, Sharma R, Himmelbach A, Saini R, Davis SJ, Stein N, Schneeberger K, von Korff M., Genetics 198(1), 2014
PMID: 24996910
An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet.
Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJ, Nilsson O., Science 330(6009), 2010
PMID: 21127254
The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet.
Pin PA, Zhang W, Vogt SH, Dally N, Buttner B, Schulze-Buxloh G, Jelly NS, Chia TY, Mutasa-Gottgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJ, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Muller AE., Curr. Biol. 22(12), 2012
PMID: 22608508
The entrainment of circadian oscillations by light and their role as photoperiodic clocks
Pittendrigh, American Naturalist 98(), 1964
Temperature-dependent regulation of flowering by antagonistic FLM variants.
Pose D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RG, Schmid M., Nature 503(7476), 2013
PMID: 24067612
A genome-scale resource for the functional characterization of Arabidopsis transcription factors.
Pruneda-Paz JL, Breton G, Nagel DH, Kang SE, Bonaldi K, Doherty CJ, Ravelo S, Galli M, Ecker JR, Kay SA., Cell Rep 8(2), 2014
PMID: 25043187
Message ends: RNA 3' processing and flowering time control.
Rataj K, Simpson GG., J. Exp. Bot. 65(2), 2013
PMID: 24363425
REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock.
Rawat R, Takahashi N, Hsu PY, Jones MA, Schwartz J, Salemi MR, Phinney BS, Harmer SL., PLoS Genet. 7(3), 2011
PMID: 21483796
The molecular basis of vernalization in different plant groups.
Ream TS, Woods DP, Amasino RM., Cold Spring Harb. Symp. Quant. Biol. 77(), 2012
PMID: 23619014
Supervital Mutants of Arabidopsis.
Redei GP., Genetics 47(4), 1962
PMID: 17248096
The conserved PFT1 tandem repeat is crucial for proper flowering in Arabidopsis thaliana.
Rival P, Press MO, Bale J, Grancharova T, Undurraga SF, Queitsch C., Genetics 198(2), 2014
PMID: 25116137
Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis.
Roden LC, Song HR, Jackson S, Morris K, Carre IA., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12271123
Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS.
Rosas U, Mei Y, Xie Q, Banta JA, Zhou RW, Seufferheld G, Gerard S, Chou L, Bhambhra N, Parks JD, Flowers JM, McClung CR, Hanzawa Y, Purugganan MD., Nat Commun 5(), 2014
PMID: 24736505
LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator.
Rugnone ML, Faigon Soverna A, Sanchez SE, Schlaen RG, Hernando CE, Seymour DK, Mancini E, Chernomoretz A, Weigel D, Mas P, Yanovsky MJ., Proc. Natl. Acad. Sci. U.S.A. 110(29), 2013
PMID: 23818596
FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways.
Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ., BMC Plant Biol. 6(), 2006
PMID: 16737527
Prediction of photoperiodic regulators from quantitative gene circuit models.
Salazar JD, Saithong T, Brown PE, Foreman J, Locke JC, Halliday KJ, Carre IA, Rand DA, Millar AJ., Cell 139(6), 2009
PMID: 20005809
Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G., Science 288(5471), 2000
PMID: 10834834
GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.
Sawa M, Kay SA., Proc. Natl. Acad. Sci. U.S.A. 108(28), 2011
PMID: 21709243
FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis.
Sawa M, Nusinow DA, Kay SA, Imaizumi T., Science 318(5848), 2007
PMID: 17872410
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
MIDGET cooperates with COP1 and SPA1 to repress flowering in Arabidopsis thaliana.
Schrader A, Uhrig J., Plant Signal Behav 8(9), 2013
PMID: 23857347
TEMPRANILLO is a regulator of juvenility in plants.
Sgamma T, Jackson A, Muleo R, Thomas B, Massiah A., Sci Rep 4(), 2014
PMID: 24424565
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
Shrestha R, Gomez-Ariza J, Brambilla V, Fornara F., Ann. Bot. 114(7), 2014
PMID: 24651369
Remembering the prolonged cold of winter.
Song J, Irwin J, Dean C., Curr. Biol. 23(17), 2013
PMID: 24028964
FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering.
Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T., Science 336(6084), 2012
PMID: 22628657
Regulation of flowering time: all roads lead to Rome.
Srikanth A, Schmid M., Cell. Mol. Life Sci. 68(12), 2011
PMID: 21611891
The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function.
Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C., Genes Dev. 17(2), 2003
PMID: 12533513
The circadian clock goes genomic.
Staiger D, Shin J, Johansson M, Davis SJ., Genome Biol. 14(6), 2013
PMID: 23796230
Arabidopsis MSI1 functions in photoperiodic flowering time control.
Steinbach Y, Hennig L., Front Plant Sci 5(), 2014
PMID: 24639681
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schoning JC, Alfano JR, Staiger D., Plant J. 56(2), 2008
PMID: 18573194
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol. 10(), 2010
PMID: 20946635
CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis.
Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G., Nature 410(6832), 2001
PMID: 11323677
The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.
Thines BC, Youn Y, Duarte MI, Harmon FG., J. Exp. Bot. 65(4), 2014
PMID: 24574484
The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element.
Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ., New Phytol. 187(1), 2010
PMID: 20406410
Regulation and identity of florigen: FLOWERING LOCUS T moves center stage.
Turck F, Fornara F, Coupland G., Annu Rev Plant Biol 59(), 2008
PMID: 18444908
The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley.
Turner A, Beales J, Faure S, Dunford RP, Laurie DA., Science 310(5750), 2005
PMID: 16284181
Photoreceptor regulation of CONSTANS protein in photoperiodic flowering.
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G., Science 303(5660), 2004
PMID: 14963328
Photoperiodic control of the floral transition through a distinct polycomb repressive complex.
Wang Y, Gu X, Yuan W, Schmitz RJ, He Y., Dev. Cell 28(6), 2014
PMID: 24613395
LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock.
Wang Y, Wu JF, Nakamichi N, Sakakibara H, Nam HG, Wu SH., Plant Cell 23(2), 2011
PMID: 21357491
A conserved molecular basis for photoperiod adaptation in two temperate legumes.
Weller JL, Liew LC, Hecht VF, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C, Dalmais M, Rameau C, Bendahmane A, Macknight RC, Lejeune-Henaut I., Proc. Natl. Acad. Sci. U.S.A. 109(51), 2012
PMID: 23213200
The genetic control of flowering in pea
Weller, Trends in Plant Science 2(), 1997
CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis.
Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G., Plant Cell 18(11), 2006
PMID: 17138697
LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator.
Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z, Zhao C, McClung CR, Xu X., Plant Cell 26(7), 2014
PMID: 25012192
Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q., Nat. Genet. 40(6), 2008
PMID: 18454147
TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT.
Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T., Plant Cell Physiol. 46(8), 2005
PMID: 15951566
CONSTANS is a photoperiod regulated activator of flowering in sorghum.
Yang S, Weers BD, Morishige DT, Mullet JE., BMC Plant Biol. 14(), 2014
PMID: 24884377
Time zones: a comparative genetics of circadian clocks.
Young MW, Kay SA., Nat. Rev. Genet. 2(9), 2001
PMID: 11533719
Sugar is an endogenous cue for juvenile-to-adult phase transition in plants.
Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, Sun Y, Wu J, Huang J, Wang G, Wang JW., Elife 2(), 2013
PMID: 23543845
OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering.
Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, Wang S, Deng XW, Li S., PLoS ONE 7(8), 2012
PMID: 22912900
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25371508
PubMed | Europe PMC

Suchen in

Google Scholar