Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum

Nguyen AQ, Komati Reddy G, Schneider J, Wendisch VF (2015)
Metabolites 5(2): 211-231.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Corynebacterium glutamicum shows great potential for the production of the glutamate-derived diamine putrescine, a monomeric compound of polyamides. A genome-scale stoichiometric model of a C. glutamicum strain with reduced ornithine transcarbamoylase activity, derepressed arginine biosynthesis, and an anabolic plasmid-addiction system for heterologous expression of E. coli ornithine decarboxylase gene speC was investigated by flux balance analysis with respect to its putrescine production potential. Based on these simulations, enhancing glycolysis and anaplerosis by plasmid-borne overexpression of the genes for glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase as well as reducing 2-oxoglutarate dehydrogenase activity were chosen as targets for metabolic engineering. Changing the translational start codon of the chromosomal gene for 2-oxoglutarate dehydrogenase subunit E1o to the less preferred TTG and changing threonine 15 of OdhI to alanine reduced 2-oxoglutarate dehydrogenase activity about five fold and improved putrescine titers by 28%. Additional engineering steps improved further putrescine production with the largest contributions from preventing the formation of the by-product N-acetylputrescine by deletion of spermi(di)ne N-acetyltransferase gene snaA and from overexpression of the gene for a feedback-resistant N-acetylglutamate kinase variant. The resulting C. glutamicum strain NA6 obtained by systems metabolic engineering accumulated two fold more putrescine than the base strain, i.e., 58.1 ± 0.2 mM, and showed a specific productivity of 0.045 g·g−1·h−1 and a yield on glucose of 0.26 g·g−1.
Stichworte
N-acetylglutamate kinase; gamma-glutamate kinase; CgmR; spermidine N-acetyltransferase; 2-oxoglutatarate dehydrogenase; Corynebacterium glutamicum; putrescine; diamine production; glyceraldehyde 3-phosphate dehydrogenase; pyruvate carboxylase; OdhI; genome-scale metabolic model; flux balance analysis
Erscheinungsjahr
2015
Zeitschriftentitel
Metabolites
Band
5
Ausgabe
2
Seite(n)
211-231
ISSN
2218-1989
Page URI
https://pub.uni-bielefeld.de/record/2729771

Zitieren

Nguyen AQ, Komati Reddy G, Schneider J, Wendisch VF. Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum. Metabolites. 2015;5(2):211-231.
Nguyen, A. Q., Komati Reddy, G., Schneider, J., & Wendisch, V. F. (2015). Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum. Metabolites, 5(2), 211-231. doi:10.3390/metabo5020211
Nguyen, Anh Quynh, Komati Reddy, Gajendar, Schneider, Jens, and Wendisch, Volker F. 2015. “Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum”. Metabolites 5 (2): 211-231.
Nguyen, A. Q., Komati Reddy, G., Schneider, J., and Wendisch, V. F. (2015). Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum. Metabolites 5, 211-231.
Nguyen, A.Q., et al., 2015. Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum. Metabolites, 5(2), p 211-231.
A.Q. Nguyen, et al., “Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum”, Metabolites, vol. 5, 2015, pp. 211-231.
Nguyen, A.Q., Komati Reddy, G., Schneider, J., Wendisch, V.F.: Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum. Metabolites. 5, 211-231 (2015).
Nguyen, Anh Quynh, Komati Reddy, Gajendar, Schneider, Jens, and Wendisch, Volker F. “Fermentative production of the diamine putrescine: systems metabolic engineering of Corynebacterium glutamicum”. Metabolites 5.2 (2015): 211-231.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:30Z
MD5 Prüfsumme
eb3b7f7982564b28002ccbbb835b1e77


17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
Chen XF, Xia XX, Lee SY, Qian ZG., Biotechnol Bioeng 115(4), 2018
PMID: 29251347
Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production.
Li Z, Shen YP, Jiang XL, Feng LS, Liu JZ., J Ind Microbiol Biotechnol 45(2), 2018
PMID: 29344811
Enzymatic Cascade Reactions for the Synthesis of Chiral Amino Alcohols from L-lysine.
Fossey-Jouenne A, Vergne-Vaxelaire C, Zaparucha A., J Vis Exp (132), 2018
PMID: 29553559
Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Systems metabolic engineering strategies for the production of amino acids.
Ma Q, Zhang Q, Xu Q, Zhang C, Li Y, Fan X, Xie X, Chen N., Synth Syst Biotechnol 2(2), 2017
PMID: 29062965
Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.
Zhang B, Yu M, Zhou Y, Li Y, Ye BC., Microb Cell Fact 16(1), 2017
PMID: 28938890
Engineering cell factories for producing building block chemicals for bio-polymer synthesis.
Tsuge Y, Kawaguchi H, Sasaki K, Kondo A., Microb Cell Fact 15(), 2016
PMID: 26794242
Recent advances in amino acid production by microbial cells.
Hirasawa T, Shimizu H., Curr Opin Biotechnol 42(), 2016
PMID: 27151315

52 References

Daten bereitgestellt von Europe PubMed Central.

Biocatalytic and fermentative production of alpha,omega-bifunctional polymer precursors
Schaffer S., Haas T.., 2014
Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development.
Rydz J, Sikorska W, Kyulavska M, Christova D., Int J Mol Sci 16(1), 2014
PMID: 25551604

Kroschwitz J.I., Seidel A.., 2004
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
Thick juice-based production of amino acids and putrescine by Corynebacterium glutamicum
Meiswinkel T.M., Lindner S.N., Wendisch V.F.., 2014
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Gotker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J. Biotechnol. 192 Pt B(), 2014
PMID: 24486440
Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum.
Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H., Microb. Cell Fact. 8(), 2009
PMID: 19646286
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl. Environ. Microbiol. 74(20), 2008
PMID: 18757581
Engineering of Corynebacterium glutamicum for growth and production of -ornithine, -lysine, and lycopene from hexuronic acids
Hadiati A., Krahn I., Lindner S.N., Wendisch V.F.., 2014
Molecular cloning of the Corynebacterium glutamicum ('Brevibacterium lactofermentum' AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase.
Usuda Y, Tujimoto N, Abe C, Asakura Y, Kimura E, Kawahara Y, Kurahashi O, Matsui H., Microbiology (Reading, Engl.) 142 ( Pt 12)(), 1996
PMID: 9004499
Lipoamide dehydrogenase from Corynebacterium glutamicum: molecular and physiological analysis of the lpd gene and characterization of the enzyme.
Schwinde JW, Hertz PF, Sahm H, Eikmanns BJ, Guyonvarch A., Microbiology (Reading, Engl.) 147(Pt 8), 2001
PMID: 11495999
Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum.
Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S., Biosci. Biotechnol. Biochem. 61(7), 1997
PMID: 9255973
Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum.
Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T., Appl. Environ. Microbiol. 73(4), 2006
PMID: 17158630
Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: Mutants and a model.
Raasch K, Bocola M, Labahn J, Leitner A, Eggeling L, Bott M., J. Biotechnol. 191(), 2014
PMID: 24905147
The FHA domain of OdhI interacts with the carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum.
Krawczyk S, Raasch K, Schultz C, Hoffelder M, Eggeling L, Bott M., FEBS Lett. 584(8), 2010
PMID: 20303957
Genomes and genome-level engineering of amino acid-producing bacteria
Yukawa H., Inui M., Vertes A.A.., 2007
Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum
Peters-Wendisch P.G., Wendisch V.F., Paul S., Eikmanns B.J., Sahm H.., 1997
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation.
Jojima T, Fujii M, Mori E, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 87(1), 2010
PMID: 20217078
Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis.
Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H., Microb. Cell Fact. 6(), 2007
PMID: 17587457
Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine.
Jiang LY, Chen SG, Zhang YY, Liu JZ., BMC Biotechnol. 13(), 2013
PMID: 23725060
Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
Kim SY, Lee J, Lee SY., Biotechnol. Bioeng. 112(2), 2014
PMID: 25163446
Proline reduces the binding of transcriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum.
Lee SY, Shin HS, Park JS, Kim YH, Min J., Appl. Microbiol. Biotechnol. 86(1), 2009
PMID: 19798496
Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum.
Weinand M, Kramer R, Morbach S., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17390131
Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways.
Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L., ACS Synth Biol 3(1), 2013
PMID: 23829416

Eggeling L., Bott M.., 2005
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.
Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO., Nat Protoc 6(9), 2011
PMID: 21886097
Product overview and market projection of emerging bio-based plastics (Utrecht University)
Shen L., Haufe J., Patel M.K.., 2009
Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation.
Omumasaba CA, Okai N, Inui M, Yukawa H., J. Mol. Microbiol. Biotechnol. 8(2), 2004
PMID: 15925900
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25919117
PubMed | Europe PMC

Suchen in

Google Scholar