Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory

Mell M, Moleiro LH, Hertle Y, Lopez-Montero I, Cao FJ, Fouquet P, Hellweg T, Monroy F (2015)
Chemistry and Physics of Lipids 185: 61-77.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mell, Michael; Moleiro, Lara H.; Hertle, YvonneUniBi; Lopez-Montero, Ivan; Cao, Francisco J.; Fouquet, Peter; Hellweg, ThomasUniBi ; Monroy, Francisco
Abstract / Bemerkung
The presence of coupled modes of membrane motion in closed shells is extensively predicted by theory. The bilayer structure inherent to lipid vesicles is suitable to support hybrid modes of ctirvature motion coupling membrane bending with the local reorganization of the bilayer material through relaxation of the dilatational stresses. Previous experiments evidenced the existence of such hybrid modes facilitating membrane bending at high curvatures in lipid vesicles [Rodriguez-Garcia, R., Arriaga, L.R., Mell, M., Moleiro, L.H., Lopez-Montero, I., Monroy, F., 2009. Phys. Rev. Lett. 102, 1282011. For lipid bilayers that are able to undergo intermonolayer sliding, the experimental fluctuation spectra are found compatible with a bimodal schema. The usual tension/bending fluctuations couple with the hybrid modes in a mechanical interplay, which becomes progressively efficient with increasing vesicle radius, to saturate at infinity radius into the behavior expected for a flat membrane. Grounded on the theory of closed shells, we propose an approximated expression of the bimodal spectrum, which predicts the observed dependencies on the vesicle radius. The dynamical features obtained from the autocorrelation functions of the vesicle fluctuations are found in quantitative agreement with the proposed theory. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
Stichworte
Friction; Bending; Lipid; Membrane
Erscheinungsjahr
2015
Zeitschriftentitel
Chemistry and Physics of Lipids
Band
185
Seite(n)
61-77
ISSN
0009-3084
Page URI
https://pub.uni-bielefeld.de/record/2728586

Zitieren

Mell M, Moleiro LH, Hertle Y, et al. Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory. Chemistry and Physics of Lipids. 2015;185:61-77.
Mell, M., Moleiro, L. H., Hertle, Y., Lopez-Montero, I., Cao, F. J., Fouquet, P., Hellweg, T., et al. (2015). Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory. Chemistry and Physics of Lipids, 185, 61-77. doi:10.1016/j.chemphyslip.2014.11.005
Mell, Michael, Moleiro, Lara H., Hertle, Yvonne, Lopez-Montero, Ivan, Cao, Francisco J., Fouquet, Peter, Hellweg, Thomas, and Monroy, Francisco. 2015. “Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory”. Chemistry and Physics of Lipids 185: 61-77.
Mell, M., Moleiro, L. H., Hertle, Y., Lopez-Montero, I., Cao, F. J., Fouquet, P., Hellweg, T., and Monroy, F. (2015). Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory. Chemistry and Physics of Lipids 185, 61-77.
Mell, M., et al., 2015. Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory. Chemistry and Physics of Lipids, 185, p 61-77.
M. Mell, et al., “Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory”, Chemistry and Physics of Lipids, vol. 185, 2015, pp. 61-77.
Mell, M., Moleiro, L.H., Hertle, Y., Lopez-Montero, I., Cao, F.J., Fouquet, P., Hellweg, T., Monroy, F.: Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory. Chemistry and Physics of Lipids. 185, 61-77 (2015).
Mell, Michael, Moleiro, Lara H., Hertle, Yvonne, Lopez-Montero, Ivan, Cao, Francisco J., Fouquet, Peter, Hellweg, Thomas, and Monroy, Francisco. “Fluctuation dynamics of bilayer vesicles with intermonolayer sliding: Experiment and theory”. Chemistry and Physics of Lipids 185 (2015): 61-77.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Thermal and active fluctuations of a compressible bilayer vesicle.
Sachin Krishnan TV, Yasuda K, Okamoto R, Komura S., J Phys Condens Matter 30(17), 2018
PMID: 29542445
DMPC vesicle structure and dynamics in the presence of low amounts of the saponin aescin.
Sreij R, Dargel C, Geisler P, Hertle Y, Radulescu A, Pasini S, Perez J, Moleiro LH, Hellweg T., Phys Chem Chem Phys 20(14), 2018
PMID: 29505043
Nanometric thermal fluctuations of weakly confined biomembranes measured with microsecond time-resolution.
Monzel C, Schmidt D, Seifert U, Smith AS, Merkel R, Sengupta K., Soft Matter 12(21), 2016
PMID: 27142463
Relaxation dynamics of two-component fluid bilayer membranes.
Okamoto R, Kanemori Y, Komura S, Fournier JB., Eur Phys J E Soft Matter 39(5), 2016
PMID: 27145960
Wrinkling dynamics of fluctuating vesicles in time-dependent viscous flow.
Liu K, Hamilton C, Allard J, Lowengrub J, Li S., Soft Matter 12(26), 2016
PMID: 27136977

63 References

Daten bereitgestellt von Europe PubMed Central.


Angelova, Prog. Colloid Polym. Sci. 89(), 1992
Fluctuation dynamics of spherical vesicles: frustration of regular bulk dissipation into subdiffusive relaxation.
Arriaga LR, Lopez-Montero I, Orts-Gil G, Farago B, Hellweg T, Monroy F., Phys Rev E Stat Nonlin Soft Matter Phys 80(3 Pt 1), 2009
PMID: 19905147
Dissipative curvature fluctuations in bilayer vesicles: Coexistence of pure-bending and hybrid curvature-compression modes.
Arriaga LR, Rodriguez-Garcia R, Lopez-Montero I, Farago B, Hellweg T, Monroy F., Eur Phys J E Soft Matter 31(1), 2010
PMID: 20087620

Berne, 1976

Betz, Soft Matter 8(), 2012
Shape fluctuations of nearly spherical lipid vesicles and emulsion droplets.
Bivas I., Phys Rev E Stat Nonlin Soft Matter Phys 81(6 Pt 1), 2010
PMID: 20866444

Boal, 2012
Bending rigidities of lipid bilayers: their determination and main inputs in biophysical studies
Bouvrais, 2012

Evans, 1992

Farago, Phys. B: Cond. Matter 385–386(), 2006

Faucon, J. Phys. (Paris) 50(), 1989

Freyssingeas, J. Phys. 7(), 1997

Frisken, Langmuir 16(), 2000

Granek, J. Phys. II (France) 7(), 1997

Granek, Soft Matter 7(), 2011

Helfrich, Nuovo Cimento D 3(), 1984

Helfrich, Z. Naturforsch. 28c(), 1973

Helfrich, Z. Naturforsch. 29c(), 1977

Jakes, Collect. Czech. Chem. Commun. 60(), 1995

Kimura, Mol. Cryst. Liq. Cryst. A 332(), 1999
Dynamical fluctuation of the mesoscopic structure in ternary C12E5-water-n-octane amphiphilic system.
Komura S, Takeda T, Kawabata Y, Ghosh SK, Seto H, Nagao M., Phys Rev E Stat Nonlin Soft Matter Phys 63(4 Pt 1), 2001
PMID: 11308838

Kramer, J. Chem. Phys. 55(), 1971

Kraus, J. Phys. II France 4(), 1994

Landau, 1986
Dynamics of viscoelastic membranes.
Levine AJ, MacKintosh FC., Phys Rev E Stat Nonlin Soft Matter Phys 66(6 Pt 1), 2002
PMID: 12513296
The conformation of membranes.
Lipowsky R., Nature 349(6309), 1991
PMID: 1992351

Lovesey, J. Phys. C: Solid State Phys. 9(), 1976

Méléard, Europhys. Lett. 11(), 1990
Elastic curvature constants of lipid monolayers and bilayers.
Marsh D., Chem. Phys. Lipids 144(2), 2006
PMID: 17045578
Bending stiffness of biological membranes: what can be measured by neutron spin echo?
Mell M, Moleiro LH, Hertle Y, Fouquet P, Schweins R, Lopez-Montero I, Hellweg T, Monroy F., Eur Phys J E Soft Matter 36(7), 2013
PMID: 23852577

Merkel, J. Phys. (Paris) 50(), 1989
Dynamics of shape fluctuations of quasi-spherical vesicles revisited.
Miao L, Lomholt MA, Kleis J., Eur Phys J E Soft Matter 9(2), 2002
PMID: 15015113
Dynamical fluctuations of droplet microemulsions and vesicles.
Milner ST, Safran SA., Phys Rev A Gen Phys 36(9), 1987
PMID: 9899393

Nagao, J. Appl. Crystallogr. 33(), 2000
Introductory lecture: basic quantities in model biomembranes.
Nagle JF., Faraday Discuss. 161(), 2013
PMID: 23805735
Refined contour analysis of giant unilamellar vesicles.
Pecreaux J, Dobereiner HG, Prost J, Joanny JF, Bassereau P., Eur Phys J E Soft Matter 13(3), 2004
PMID: 15103522

Pott, Europhys. Lett. 59(), 2002

Provencher, Comput. Phys. Commun. 27(), 1982
Effect of chain length and unsaturation on elasticity of lipid bilayers.
Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E., Biophys. J. 79(1), 2000
PMID: 10866959

Rodríguez-García, Phys. Rev. Lett. 102(), 2009

Sackmann, 1986

Safran, 1994

Schleger, Phys. B 266(), 1999

Schneider, J. Phys. (Paris) 45(), 1984

Seifert, Europhys. Lett. 23(), 1993

Seifert, Phys. Rev. A 44(), 2001
Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions.
Sheetz MP, Singer SJ., Proc. Natl. Acad. Sci. U.S.A. 71(11), 1974
PMID: 4530994
Thermal undulations of lipid bilayers relax by intermonolayer friction at submicrometer length scales.
Shkulipa SA, den Otter WK, Briels WJ., Phys. Rev. Lett. 96(17), 2006
PMID: 16712341
The fluid mosaic model of the structure of cell membranes.
Singer SJ, Nicolson GL., Science 175(4023), 1972
PMID: 4333397

Takeda, J. Phys. Chem. Solids 60(), 1999

van, 1992

Ventsel, 2001
Determining biomembrane bending rigidities from simulations of modest size.
Watson MC, Brandt EG, Welch PM, Brown FL., Phys. Rev. Lett. 109(2), 2012
PMID: 23030207
Lipid bilayers and membrane dynamics: insight into thickness fluctuations.
Woodka AC, Butler PD, Porcar L, Farago B, Nagao M., Phys. Rev. Lett. 109(5), 2012
PMID: 23006210

Yeung, J. Phys. II 5(), 1995
Undulations and Dynamic Structure Factor of Membranes.
Zilman AG, Granek R., Phys. Rev. Lett. 77(23), 1996
PMID: 10062631

Zilman, Chem. Phys. 284(), 2002
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25455136
PubMed | Europe PMC

Suchen in

Google Scholar