A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

Meier T, Foerste A, Tavassolizadeh A, Rott K, Meyners D, Groeger R, Reiss G, Quandt E, Schimmel T, Hoelscher H (2015)
Beilstein Journal of Nanotechnology 6: 451-461.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Meier, Tobias; Foerste, Alexander; Tavassolizadeh, Ali; Rott, KarstenUniBi; Meyners, Dirk; Groeger, Roland; Reiss, GünterUniBi ; Quandt, Eckhard; Schimmel, Thomas; Hoelscher, Hendrik
Abstract / Bemerkung
We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 x 5 x 5 mu m(3) is mounted on a large-area scanner with a scan range of 800 x 800 x 35 mu m(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.
Stichworte
scanning probe microscopes and components; magnetostriction; atomic force microscopy (AFM); magnetomechanical effects
Erscheinungsjahr
2015
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
6
Seite(n)
451-461
ISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2728374

Zitieren

Meier T, Foerste A, Tavassolizadeh A, et al. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. Beilstein Journal of Nanotechnology. 2015;6:451-461.
Meier, T., Foerste, A., Tavassolizadeh, A., Rott, K., Meyners, D., Groeger, R., Reiss, G., et al. (2015). A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. Beilstein Journal of Nanotechnology, 6, 451-461. doi:10.3762/bjnano.6.46
Meier, Tobias, Foerste, Alexander, Tavassolizadeh, Ali, Rott, Karsten, Meyners, Dirk, Groeger, Roland, Reiss, Günter, Quandt, Eckhard, Schimmel, Thomas, and Hoelscher, Hendrik. 2015. “A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans”. Beilstein Journal of Nanotechnology 6: 451-461.
Meier, T., Foerste, A., Tavassolizadeh, A., Rott, K., Meyners, D., Groeger, R., Reiss, G., Quandt, E., Schimmel, T., and Hoelscher, H. (2015). A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. Beilstein Journal of Nanotechnology 6, 451-461.
Meier, T., et al., 2015. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. Beilstein Journal of Nanotechnology, 6, p 451-461.
T. Meier, et al., “A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans”, Beilstein Journal of Nanotechnology, vol. 6, 2015, pp. 451-461.
Meier, T., Foerste, A., Tavassolizadeh, A., Rott, K., Meyners, D., Groeger, R., Reiss, G., Quandt, E., Schimmel, T., Hoelscher, H.: A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. Beilstein Journal of Nanotechnology. 6, 451-461 (2015).
Meier, Tobias, Foerste, Alexander, Tavassolizadeh, Ali, Rott, Karsten, Meyners, Dirk, Groeger, Roland, Reiss, Günter, Quandt, Eckhard, Schimmel, Thomas, and Hoelscher, Hendrik. “A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans”. Beilstein Journal of Nanotechnology 6 (2015): 451-461.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors.
Tavassolizadeh A, Rott K, Meier T, Quandt E, Hölscher H, Reiss G, Meyners D., Sensors (Basel) 16(11), 2016
PMID: 27845708

66 References

Daten bereitgestellt von Europe PubMed Central.

Atomic force microscope.
Binnig G, Quate CF, Gerber C., Phys. Rev. Lett. 56(9), 1986
PMID: 10033323

Vettiger P, Cross G, Despont M, Drechsler U, Dürig U, Gotsmann B, Haberle W, Lantz M, Rothuizen H, Stutz R., 2002

Carrascosa L, Moreno M, Álvarez M, Lechuga L., 2006

Oliver R., 2008
Nanoscale three-dimensional patterning of molecular resists by scanning probes.
Pires D, Hedrick JL, De Silva A, Frommer J, Gotsmann B, Wolf H, Despont M, Duerig U, Knoll AW., Science 328(5979), 2010
PMID: 20413457

Jalili N, Laxminarayana K., 2004

Vorburger T, Dagata J, Wilkening G, Lizuka K, Thwaite E, Lonardo P., 1997

Minne S, Adams J, Yaralioglu G, Manalis S, Atalar A, Quate C., 1998

Dai G, Pohlenz F, Danzebrink H-U, Xu M, Hasche K, Wilkening G., 2004

Meyer G, Amer N., 1988

Marti O, Colchero J, Mlynek J., 1990

Meyer G, Amer N., 1990

Allers W, Schwarz A, Schwarz U, Wiesendanger R., 1998

Hug H, Stiefel B, van P, Moser A, Martin S, Güntherodt H-J., 1999
Atomic force microscope with optional replaceable fluid cell
AUTHOR UNKNOWN, 1993
Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid.
Nishida S, Kobayashi D, Sakurada T, Nakazawa T, Hoshi Y, Kawakatsu H., Rev Sci Instrum 79(12), 2008
PMID: 19123565
Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology.
Kassies R, van der Werf KO, Lenferink A, Hunter CN, Olsen JD, Subramaniam V, Otto C., J Microsc 217(Pt 1), 2005
PMID: 15655068

Karrai K, Grober R., 1995

Giessibl F., 2000

Hembacher S, Giessibl F, Mannhart J., 2002

Giessibl F., 2003

Tansock J, Williams C., 1992

Doll J, Pruitt B., 2010
Atomic Force Microscopy Using a Piezoresistive Cantilever
Tortonese M, Yamada H, Barrett R, Quate C., 1991

Tortonese M, Barrett R, Quate C., 1993

Linnemann R, Gotszalk T, Hadjiiski L, Rangelow I., 1995

Linnemann R, Gotszalk T, Rangelow I, Dumania P, Oesterschulze E., 1996
Piezoresistive sensors for scanning probe microscopy
Gotszalk T, Grabiec P, Rangelow IW., Ultramicroscopy 82(1-4), 2000
PMID: 10741650
Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid.
Fantner GE, Schumann W, Barbero RJ, Deutschinger A, Todorov V, Gray DS, Belcher AM, Rangelow IW, Youcef-Toumi K., Nanotechnology 20(43), 2009
PMID: 19801750

Neubauer G, Cohen S, McClelland G, Horne D, Mate C., 1990

Miller S, Turner K, MacDonald N., 1997

Mamin H, Gurney B, Wilhoit D, Speriosu V., 1998
Atomic force microscope system with cantilever having unbiased spin valve magnetoresistive strain gauge
AUTHOR UNKNOWN, 1999
Scanning probe microscopy based on magnetoresistive sensing.
Sahoo DR, Sebastian A, Haberle W, Pozidis H, Eleftheriou E., Nanotechnology 22(14), 2011
PMID: 21346303

Tavassolizadeh A, Meier T, Rott K, Reiss G, Quandt E, Hölscher H, Meyners D., 2013

Gaitas A, Li T, Zhu W., 2011

Thaysen J, Boisen A, Hansen O, Bouwstra S., 2000

Yu X, Thaysen J, Hansen O, Boisen A., 2002

Lee J, King W., 2008

Qazi M, DeRoller N, Talukdar A, Koley G., 2011

Waddie A, Taghizadeh M, Mohr J, Piotter V, Mehne C, Stuck A, Stijns E, Thienpont H., 2006

Zhu J-G., 2003

Plaskett T, Freitas P, Barradas N, da M, Soares J., 1994
Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions.
Moodera JS, Kinder LR, Wong TM, Meservey R., Phys. Rev. Lett. 74(16), 1995
PMID: 10058155

Moodera J, Gallagher E, Robinson K, Nowak J., 1997

Sousa R, Sun J, Soares V, Freitas P, Kling A, da M, Soares J., 1998

Moodera J, Nassar J, Mathon G., 1999

Wang D, Nordman C, Daughton J, Qian Z, Fink J., 2004
Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions.
Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K., Nat Mater 3(12), 2004
PMID: 15516927
Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers.
Parkin SS, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH., Nat Mater 3(12), 2004
PMID: 15516928

Meyners D, von T, Vieth M, Rührig M, Schmitt S, Quandt E., 2009

Albon C, Weddemann A, Auge A, Rott K, Hütten A., 2009

Löhndorf M, Duenas T, Tewes M, Quandt E, Rührig M, Wecker J., 2002

O’Handley R., 2000

Lee Y, Hayakawa J, Ikeda S, Matsukura F, Ohno H., 2006

Ikeda S, Hayakawa J, Lee Y, Matsukura F, Ohno Y, Hanyu T, Ohno H., 2007

Meyners D, Puchalla J, Dokupil S, Löhndorf M, Quandt E., 2007

Jaffrès H, Lacour D, Nguyen F, Briatico J, Petroff F, Vaurès A., 2001

Kindt J, Fantner G, Thompson J, Hansma P., 2004

Cleveland J, Anczykowski B, Schmid A, Elings V., 1998

Anczykowski B, Gotsmann B, Fuchs H, Cleveland J, Elings V., 1999

Noy A, Sanders C, Vezenov D, Wong S, Lieber C., 1998
Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers.
Huang C, Moosmann M, Jin J, Heiler T, Walheim S, Schimmel T., Beilstein J Nanotechnol 3(), 2012
PMID: 23019558

Maboudian R, Ashurst W, Carraro C., 2000
How dry are dried samples? Water adsorption measured by STM.
Freund J, Halbritter J, Horber JK., Microsc. Res. Tech. 44(5), 1999
PMID: 10090207

Dürig U, Züger O, Stalder A., 1992
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25821686
PubMed | Europe PMC

Suchen in

Google Scholar