Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES

Welsch R, Manthe U (2015)
The Journal of Chemical Physics 142(6): 64309.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction are calculated in full and reduced dimensionality on a recent neural network potential [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. The quantum dynamics calculation employs the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and rigorously studies the reaction for vanishing total angular momentum (J = 0). The calculations investigate the accuracy of the neutral network potential and study the effect resulting from a reduced-dimensional treatment. Very good agreement is found between the present results obtained on the neural network potential and previous results obtained on a Shepard interpolated potential energy surface. The reduced-dimensional calculations only consider motion in eight degrees of freedom and retain the C-3v symmetry of the methyl fragment. Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well. Similar agreement is also found if reaction probabilities averaged over similar types of vibrational excitation of the methane reactant are considered. In contrast, significant differences between reduced and full-dimensional results are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f(2)-symmetric) stretching, or e-symmetric bending excited states of methane. (C) 2015 AIP Publishing LLC.
Erscheinungsjahr
2015
Zeitschriftentitel
The Journal of Chemical Physics
Band
142
Ausgabe
6
Art.-Nr.
64309
ISSN
0021-9606
Page URI
https://pub.uni-bielefeld.de/record/2728359

Zitieren

Welsch R, Manthe U. Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES. The Journal of Chemical Physics. 2015;142(6): 64309.
Welsch, R., & Manthe, U. (2015). Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES. The Journal of Chemical Physics, 142(6), 64309. doi:10.1063/1.4906825
Welsch, Ralph, and Manthe, Uwe. 2015. “Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES”. The Journal of Chemical Physics 142 (6): 64309.
Welsch, R., and Manthe, U. (2015). Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES. The Journal of Chemical Physics 142:64309.
Welsch, R., & Manthe, U., 2015. Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES. The Journal of Chemical Physics, 142(6): 64309.
R. Welsch and U. Manthe, “Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES”, The Journal of Chemical Physics, vol. 142, 2015, : 64309.
Welsch, R., Manthe, U.: Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES. The Journal of Chemical Physics. 142, : 64309 (2015).
Welsch, Ralph, and Manthe, Uwe. “Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 -> H-2 + CH3 reaction on a neural network PES”. The Journal of Chemical Physics 142.6 (2015): 64309.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Natural reaction channels in H + CHD3 → H2 + CD3.
Ellerbrock R, Mantheuwe U., Faraday Discuss 212(0), 2018
PMID: 30226505
Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.
Qi J, Lu D, Song H, Li J, Yang M., J Chem Phys 146(12), 2017
PMID: 28388139
Recent advances in quantum scattering calculations on polyatomic bimolecular reactions.
Fu B, Shan X, Zhang DH, Clary DC., Chem Soc Rev 46(24), 2017
PMID: 29143835

117 References

Daten bereitgestellt von Europe PubMed Central.

Experimental and theoretical differential cross sections for a four-atom reaction: HD + OH → H₂O + D.
Xiao C, Xu X, Liu S, Wang T, Dong W, Yang T, Sun Z, Dai D, Xu X, Zhang DH, Yang X., Science 333(6041), 2011
PMID: 21778397
State-specific correlation of coincident product pairs in the F + CD4 reaction.
Lin JJ, Zhou J, Shiu W, Liu K., Science 300(5621), 2003
PMID: 12738861
Reactive resonance in a polyatomic reaction.
Shiu W, Lin JJ, Liu K., Phys. Rev. Lett. 92(10), 2004
PMID: 15089205

AUTHOR UNKNOWN, 0
Mode- and bond-selective reaction of Cl(2P3/2) with CH3D: C-H stretch overtone excitation near 6000 cm(-1).
Holiday RJ, Kwon CH, Annesley CJ, Fleming Crim F., J Chem Phys 125(13), 2006
PMID: 17029427
Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom?
Yan S, Wu YT, Zhang B, Yue XF, Liu K., Science 316(5832), 2007
PMID: 17588925
Tracking the energy flow along the reaction path.
Yan S, Wu YT, Liu K., Proc. Natl. Acad. Sci. U.S.A. 105(35), 2008
PMID: 18664573
Loss of Memory in H + CH4 → H2 + CH3 State-to-State Reactive Scattering.
Welsch R, Manthe U., J Phys Chem Lett 6(3), 2015
PMID: 26261943

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
First-principles theory for the H + CH4 --> H2 + CH3 reaction.
Wu T, Werner HJ, Manthe U., Science 306(5705), 2004
PMID: 15618512

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
An ab initio potential surface describing abstraction and exchange for H+CH4.
Zhang X, Braams BJ, Bowman JM., J Chem Phys 124(2), 2006
PMID: 16422563

AUTHOR UNKNOWN, 0
Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696

AUTHOR UNKNOWN, 0
Potential energy surfaces fitted by artificial neural networks.
Handley CM, Popelier PL., J Phys Chem A 114(10), 2010
PMID: 20131763

Raff, 2012
Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction.
Zhang W, Zhou Y, Wu G, Lu Y, Pan H, Fu B, Shuai Q, Liu L, Liu S, Zhang L, Jiang B, Dai D, Lee SY, Xie Z, Xie Z, Braams BJ, Bowman JM, Collins MA, Zhang DH, Yang X., Proc. Natl. Acad. Sci. U.S.A. 107(29), 2010
PMID: 20615988
Accuracy of the centrifugal sudden approximation in the H + CHD₃ → H₂ + CD₃ reaction.
Zhang Z, Chen J, Liu S, Zhang DH., J Chem Phys 140(22), 2014
PMID: 24929385

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
State-to-state reaction probabilities within the quantum transition state framework.
Welsch R, Huarte-Larranaga F, Manthe U., J Chem Phys 136(6), 2012
PMID: 22360179

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Accurate quantum calculations of the reaction rates for H/D+CH4.
van Harrevelt R, Nyman G, Manthe U., J Chem Phys 126(8), 2007
PMID: 17343444
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25681908
PubMed | Europe PMC

Suchen in

Google Scholar