Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes

Mitschang F, Langner M, Vieker H, Beyer A, Greiner A (2015)
Macromolecular Rapid Communications 36(3): 304-310.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Mitschang, Fabian; Langner, Markus; Vieker, HenningUniBi; Beyer, AndréUniBi ; Greiner, Andreas
Abstract / Bemerkung
Continuous conductive gold nanofibers are prepared via the tubes by fiber templates process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 degrees C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.
Stichworte
nanoparticles; nanowires; gold; helium ion microscopy; chemical vapor deposition
Erscheinungsjahr
2015
Zeitschriftentitel
Macromolecular Rapid Communications
Band
36
Ausgabe
3
Seite(n)
304-310
ISSN
1022-1336
Page URI
https://pub.uni-bielefeld.de/record/2723783

Zitieren

Mitschang F, Langner M, Vieker H, Beyer A, Greiner A. Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications. 2015;36(3):304-310.
Mitschang, F., Langner, M., Vieker, H., Beyer, A., & Greiner, A. (2015). Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications, 36(3), 304-310. doi:10.1002/marc.201400485
Mitschang, F., Langner, M., Vieker, H., Beyer, A., and Greiner, A. (2015). Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications 36, 304-310.
Mitschang, F., et al., 2015. Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications, 36(3), p 304-310.
F. Mitschang, et al., “Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes”, Macromolecular Rapid Communications, vol. 36, 2015, pp. 304-310.
Mitschang, F., Langner, M., Vieker, H., Beyer, A., Greiner, A.: Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications. 36, 304-310 (2015).
Mitschang, Fabian, Langner, Markus, Vieker, Henning, Beyer, André, and Greiner, Andreas. “Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes”. Macromolecular Rapid Communications 36.3 (2015): 304-310.

29 References

Daten bereitgestellt von Europe PubMed Central.

Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
Wu Y, Xiang J, Yang C, Lu W, Lieber CM., Nature 430(6995), 2004
PMID: 15229596

Engel, Angew. Chem. 122(), 2010
Supersensitive detection of explosives by silicon nanowire arrays.
Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F., Angew. Chem. Int. Ed. Engl. 49(38), 2010
PMID: 20715224

Arora, Appl. Nanosci. 3(), 2013
High-performance lithium battery anodes using silicon nanowires.
Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y., Nat Nanotechnol 3(1), 2007
PMID: 18654447

Li, Angew. Chem. 125(), 2013
Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation.
Li HH, Zhao S, Gong M, Cui CH, He D, Liang HW, Wu L, Yu SH., Angew. Chem. Int. Ed. Engl. 52(29), 2013
PMID: 23744746

Li, AIP Adv. 3(), 2013

Borgström, IEEE J. Sel. Top. Quant. 17(), 2011

Leach, Adv. Funct. Mater. 17(), 2007
Top-down fabricated silicon nanowire sensors for real-time chemical detection.
Park I, Li Z, Pisano AP, Williams RS., Nanotechnology 21(1), 2009
PMID: 19946164
Ultradense and planarized antireflective vertical silicon nanowire array using a bottom-up technique.
Dupre L, Gorisse T, Lebranchu AL, Bernardin T, Gentile P, Renevier H, Buttard D., Nanoscale Res Lett 8(1), 2013
PMID: 23497295
Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering.
Feng H, Yang Y, You Y, Li G, Guo J, Yu T, Shen Z, Wu T, Xing B., Chem. Commun. (Camb.) (15), 2009
PMID: 19333465

Agarwal, Prog. Polym. Sci. 38(), 2013

Li, Adv. Mater. 16(), 2004

Park, J. Mater. Chem. 20(), 2010

Bognitzki, Adv. Mater. 12(), 2000

Sun, Prog. Colloid. Polym. Sci. 130(), 2005

Schaefgen, J. Polym. Sci. 41(), 1959

Greiner, Acta Polymer. 48(), 1997

Qiu, Chem. Mater. 16(), 2004

Garlotta, J. Polym. Environ. 9(), 2001

Rance, Chem. Phys. Lett. 460(), 2008

Gorham, J. Polym. Sci. Pol. Chem. 4(), 1966

Greiner, Acta Polymer. 48(), 1997

Coulson, Discuss. Faraday Soc. 2(), 1947

Morgan, Micros. Today 14(), 2006
Contrast mechanisms and image formation in helium ion microscopy.
Bell DC., Microsc. Microanal. 15(2), 2009
PMID: 19284896

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25487549
PubMed | Europe PMC

Suchen in

Google Scholar