Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes
Mitschang F, Langner M, Vieker H, Beyer A, Greiner A (2015)
Macromolecular Rapid Communications 36(3): 304-310.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Continuous conductive gold nanofibers are prepared via the tubes by fiber templates process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 degrees C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.
Stichworte
nanoparticles;
nanowires;
gold;
helium ion microscopy;
chemical vapor deposition
Erscheinungsjahr
2015
Zeitschriftentitel
Macromolecular Rapid Communications
Band
36
Ausgabe
3
Seite(n)
304-310
ISSN
1022-1336
Page URI
https://pub.uni-bielefeld.de/record/2723783
Zitieren
Mitschang F, Langner M, Vieker H, Beyer A, Greiner A. Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications. 2015;36(3):304-310.
Mitschang, F., Langner, M., Vieker, H., Beyer, A., & Greiner, A. (2015). Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications, 36(3), 304-310. doi:10.1002/marc.201400485
Mitschang, Fabian, Langner, Markus, Vieker, Henning, Beyer, André, and Greiner, Andreas. 2015. “Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes”. Macromolecular Rapid Communications 36 (3): 304-310.
Mitschang, F., Langner, M., Vieker, H., Beyer, A., and Greiner, A. (2015). Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications 36, 304-310.
Mitschang, F., et al., 2015. Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications, 36(3), p 304-310.
F. Mitschang, et al., “Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes”, Macromolecular Rapid Communications, vol. 36, 2015, pp. 304-310.
Mitschang, F., Langner, M., Vieker, H., Beyer, A., Greiner, A.: Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes. Macromolecular Rapid Communications. 36, 304-310 (2015).
Mitschang, Fabian, Langner, Markus, Vieker, Henning, Beyer, André, and Greiner, Andreas. “Preparation of Conductive Gold Nanowires in Confined Environment of Gold-Filled Polymer Nanotubes”. Macromolecular Rapid Communications 36.3 (2015): 304-310.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
29 References
Daten bereitgestellt von Europe PubMed Central.
Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
Wu Y, Xiang J, Yang C, Lu W, Lieber CM., Nature 430(6995), 2004
PMID: 15229596
Wu Y, Xiang J, Yang C, Lu W, Lieber CM., Nature 430(6995), 2004
PMID: 15229596
Engel, Angew. Chem. 122(), 2010
Supersensitive detection of explosives by silicon nanowire arrays.
Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F., Angew. Chem. Int. Ed. Engl. 49(38), 2010
PMID: 20715224
Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F., Angew. Chem. Int. Ed. Engl. 49(38), 2010
PMID: 20715224
Arora, Appl. Nanosci. 3(), 2013
High-performance lithium battery anodes using silicon nanowires.
Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y., Nat Nanotechnol 3(1), 2007
PMID: 18654447
Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y., Nat Nanotechnol 3(1), 2007
PMID: 18654447
Li, Angew. Chem. 125(), 2013
Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation.
Li HH, Zhao S, Gong M, Cui CH, He D, Liang HW, Wu L, Yu SH., Angew. Chem. Int. Ed. Engl. 52(29), 2013
PMID: 23744746
Li HH, Zhao S, Gong M, Cui CH, He D, Liang HW, Wu L, Yu SH., Angew. Chem. Int. Ed. Engl. 52(29), 2013
PMID: 23744746
Li, AIP Adv. 3(), 2013
Borgström, IEEE J. Sel. Top. Quant. 17(), 2011
Leach, Adv. Funct. Mater. 17(), 2007
Top-down fabricated silicon nanowire sensors for real-time chemical detection.
Park I, Li Z, Pisano AP, Williams RS., Nanotechnology 21(1), 2009
PMID: 19946164
Park I, Li Z, Pisano AP, Williams RS., Nanotechnology 21(1), 2009
PMID: 19946164
Ultradense and planarized antireflective vertical silicon nanowire array using a bottom-up technique.
Dupre L, Gorisse T, Lebranchu AL, Bernardin T, Gentile P, Renevier H, Buttard D., Nanoscale Res Lett 8(1), 2013
PMID: 23497295
Dupre L, Gorisse T, Lebranchu AL, Bernardin T, Gentile P, Renevier H, Buttard D., Nanoscale Res Lett 8(1), 2013
PMID: 23497295
Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering.
Feng H, Yang Y, You Y, Li G, Guo J, Yu T, Shen Z, Wu T, Xing B., Chem. Commun. (Camb.) (15), 2009
PMID: 19333465
Feng H, Yang Y, You Y, Li G, Guo J, Yu T, Shen Z, Wu T, Xing B., Chem. Commun. (Camb.) (15), 2009
PMID: 19333465
Agarwal, Prog. Polym. Sci. 38(), 2013
Li, Adv. Mater. 16(), 2004
Park, J. Mater. Chem. 20(), 2010
Preparation of continuous gold nanowires by electrospinning of high-concentration aqueous dispersions of gold nanoparticles.
Gries K, Vieker H, Golzhauser A, Agarwal S, Greiner A., Small 8(9), 2012
PMID: 22378690
Gries K, Vieker H, Golzhauser A, Agarwal S, Greiner A., Small 8(9), 2012
PMID: 22378690
Bognitzki, Adv. Mater. 12(), 2000
Sun, Prog. Colloid. Polym. Sci. 130(), 2005
Schaefgen, J. Polym. Sci. 41(), 1959
Greiner, Acta Polymer. 48(), 1997
Qiu, Chem. Mater. 16(), 2004
Garlotta, J. Polym. Environ. 9(), 2001
Rance, Chem. Phys. Lett. 460(), 2008
Gorham, J. Polym. Sci. Pol. Chem. 4(), 1966
Greiner, Acta Polymer. 48(), 1997
Coulson, Discuss. Faraday Soc. 2(), 1947
Morgan, Micros. Today 14(), 2006
Contrast mechanisms and image formation in helium ion microscopy.
Bell DC., Microsc. Microanal. 15(2), 2009
PMID: 19284896
Bell DC., Microsc. Microanal. 15(2), 2009
PMID: 19284896
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 25487549
PubMed | Europe PMC
Suchen in