An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers

Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Gröger H, Liese A, Herz H-G, Bornscheuer UT (2015)
Angewandte Chemie (International ed. in English) 54(9): 2784-2787.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schmidt, Sandy; Scherkus, Christian; Muschiol, Jan; Menyes, Ulf; Winkler, Till; Hummel, WernerUniBi; Gröger, HaraldUniBi; Liese, Andreas; Herz, Hans-Georg; Bornscheuer, Uwe T.
Abstract / Bemerkung
Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL.
Erscheinungsjahr
2015
Zeitschriftentitel
Angewandte Chemie (International ed. in English)
Band
54
Ausgabe
9
Seite(n)
2784-2787
ISSN
1521-3773
Page URI
https://pub.uni-bielefeld.de/record/2721884

Zitieren

Schmidt S, Scherkus C, Muschiol J, et al. An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers. Angewandte Chemie (International ed. in English). 2015;54(9):2784-2787.
Schmidt, S., Scherkus, C., Muschiol, J., Menyes, U., Winkler, T., Hummel, W., Gröger, H., et al. (2015). An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers. Angewandte Chemie (International ed. in English), 54(9), 2784-2787. doi:10.1002/anie.201410633
Schmidt, Sandy, Scherkus, Christian, Muschiol, Jan, Menyes, Ulf, Winkler, Till, Hummel, Werner, Gröger, Harald, Liese, Andreas, Herz, Hans-Georg, and Bornscheuer, Uwe T. 2015. “An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers”. Angewandte Chemie (International ed. in English) 54 (9): 2784-2787.
Schmidt, S., Scherkus, C., Muschiol, J., Menyes, U., Winkler, T., Hummel, W., Gröger, H., Liese, A., Herz, H. - G., and Bornscheuer, U. T. (2015). An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers. Angewandte Chemie (International ed. in English) 54, 2784-2787.
Schmidt, S., et al., 2015. An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers. Angewandte Chemie (International ed. in English), 54(9), p 2784-2787.
S. Schmidt, et al., “An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers”, Angewandte Chemie (International ed. in English), vol. 54, 2015, pp. 2784-2787.
Schmidt, S., Scherkus, C., Muschiol, J., Menyes, U., Winkler, T., Hummel, W., Gröger, H., Liese, A., Herz, H.-G., Bornscheuer, U.T.: An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers. Angewandte Chemie (International ed. in English). 54, 2784-2787 (2015).
Schmidt, Sandy, Scherkus, Christian, Muschiol, Jan, Menyes, Ulf, Winkler, Till, Hummel, Werner, Gröger, Harald, Liese, Andreas, Herz, Hans-Georg, and Bornscheuer, Uwe T. “An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers”. Angewandte Chemie (International ed. in English) 54.9 (2015): 2784-2787.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.
Karande R, Salamanca D, Schmid A, Buehler K., Biotechnol Bioeng 115(2), 2018
PMID: 28986995
Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and ϵ-Caprolactone.
Todea A, Aparaschivei D, Badea V, Boeriu CG, Peter F., Biotechnol J 13(6), 2018
PMID: 29542861
Kinetic insights into ϵ-caprolactone synthesis: Improvement of an enzymatic cascade reaction.
Scherkus C, Schmidt S, Bornscheuer UT, Gröger H, Kara S, Liese A., Biotechnol Bioeng 114(6), 2017
PMID: 28112389
Redesign of water networks for efficient biocatalysis.
Fink MJ, Syrén PO., Curr Opin Chem Biol 37(), 2017
PMID: 28259084
Cloning and characterization of the Type I Baeyer-Villiger monooxygenase from Leptospira biflexa.
Ceccoli RD, Bianchi DA, Fink MJ, Mihovilovic MD, Rial DV., AMB Express 7(1), 2017
PMID: 28452041
Fungal BVMOs as alternatives to cyclohexanone monooxygenase.
Mthethwa KS, Kassier K, Engel J, Kara S, Smit MS, Opperman DJ., Enzyme Microb Technol 106(), 2017
PMID: 28859804
Biocatalytic hydrogen-borrowing cascades.
Knaus T, Mutti FG., Chim Oggi 35(5), 2017
PMID: 29515288
Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends.
Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN., Microb Biotechnol 9(1), 2016
PMID: 26275154
Fully automatized high-throughput enzyme library screening using a robotic platform.
Dörr M, Fibinger MP, Last D, Schmidt S, Santos-Aberturas J, Böttcher D, Hummel A, Vickers C, Voss M, Bornscheuer UT., Biotechnol Bioeng 113(7), 2016
PMID: 26724475
Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone) Synthesis.
Ren H, Xing Z, Yang J, Jiang W, Zhang G, Tang J, Li Q., Molecules 21(6), 2016
PMID: 27322233
Baeyer-Villiger oxidations: biotechnological approach.
Bučko M, Gemeiner P, Schenkmayerová A, Krajčovič T, Rudroff F, Mihovilovič MD., Appl Microbiol Biotechnol 100(15), 2016
PMID: 27328941
CaLB Catalyzed Conversion of ε-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels.
Engel S, Höck H, Bocola M, Keul H, Schwaneberg U, Möller M., Polymers (Basel) 8(10), 2016
PMID: 30974648
Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
Beier A, Bordewick S, Genz M, Schmidt S, van den Bergh T, Peters C, Joosten HJ, Bornscheuer UT., Chembiochem 17(24), 2016
PMID: 27735116

43 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
New generation of biocatalysts for organic synthesis.
Nestl BM, Hammer SC, Nebel BA, Hauer B., Angew. Chem. Int. Ed. Engl. 53(12), 2014
PMID: 24520044

AUTHOR UNKNOWN, Angew. Chem. 126(), 2014
Engineering the third wave of biocatalysis.
Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K., Nature 485(7397), 2012
PMID: 22575958
Industrial methods for the production of optically active intermediates.
Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T., Angew. Chem. Int. Ed. Engl. 43(7), 2004
PMID: 14767950

AUTHOR UNKNOWN, Angew. Chem. 116(), 2004
Dispelling the myths--biocatalysis in industrial synthesis.
Schoemaker HE, Mink D, Wubbolts MG., Science 299(5613), 2003
PMID: 12637735
Industrial biocatalysis today and tomorrow.
Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B., Nature 409(6817), 2001
PMID: 11196655

AUTHOR UNKNOWN, 0
Enzymatic synthesis of acrylamide: a success story not yet over.
Kobayashi M, Nagasawa T, Yamada H., Trends Biotechnol. 10(11), 1992
PMID: 1368882
Metabolic engineering for the microbial production of 1,3-propanediol.
Nakamura CE, Whited GM., Curr. Opin. Biotechnol. 14(5), 2003
PMID: 14580573
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S., Nat. Chem. Biol. 7(7), 2011
PMID: 21602812

Weissermel, 2003

AUTHOR UNKNOWN, 0
Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis.
Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT., Org. Biomol. Chem. 10(31), 2012
PMID: 22733152
Baeyer-Villiger monooxygenases: more than just green chemistry.
Leisch H, Morley K, Lau PC., Chem. Rev. 111(7), 2011
PMID: 21542563

Stewart, J. Chem. Soc. Perkin Trans. 1 (), 1996
Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone.
Staudt S, Bornscheuer UT, Menyes U, Hummel W, Groger H., Enzyme Microb. Technol. 53(4), 2013
PMID: 23931696
A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol.
Mallin H, Wulf H, Bornscheuer UT., Enzyme Microb. Technol. 53(4), 2013
PMID: 23931695

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Kobayashi, Macromol. Chem. Phys. 199(), 1998
Synthesis of polycaprolactone: a review.
Labet M, Thielemans W., Chem Soc Rev 38(12), 2009
PMID: 20449064

Kobayashi, J. Polym. Sci. Part A 37(), 1999

Kobayashi, Bull. Chem. Soc. Jpn. 74(), 2001

MacDonald, Macromolecules 28(), 1995

Nobes, Macromolecules 29(), 1996
Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.
Sivalingam G, Madras G., Biomacromolecules 5(2), 2004
PMID: 15003027

Dong, J. Polym. Sci. Part A 37(), 1999

Uyama, Chem. Lett. 22(), 1993

AUTHOR UNKNOWN, 0
Developments and trends in enzyme catalysis in nonconventional media.
Krishna SH., Biotechnol. Adv. 20(3-4), 2002
PMID: 14550031

Varma, Prog. Polym. Sci. 30(), 2005

Namekawa, Polym. J. 30(), 1998

AUTHOR UNKNOWN, 0

Müller, Eur. J. Lipid Sci. Technol. 116(), 2014

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25597635
PubMed | Europe PMC

Suchen in

Google Scholar