Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies
Drechsler A, Helling T, Steinfartz S (2015)
Ecology and Evolution 5(1): 141-151.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Drechsler, Axel;
Helling, Tobias;
Steinfartz, SebastianUniBi
Einrichtung
Abstract / Bemerkung
Capture-mark-recapture (CMR) approaches are the backbone of many studies in population ecology to gain insight on the life cycle, migration, habitat use, and demography of target species. The reliable and repeatable recognition of an individual throughout its lifetime is the basic requirement of a CMR study. Although invasive techniques are available to mark individuals permanently, noninvasive methods for individual recognition mainly rest on photographic identification of external body markings, which are unique at the individual level. The re-identification of an individual based on comparing shape patterns of photographs by eye is commonly used. Automated processes for photographic re-identification have been recently established, but their performance in large datasets (i.e., > 1000 individuals) has rarely been tested thoroughly. Here, we evaluated the performance of the program AMPHIDENT, an automatic algorithm to identify individuals on the basis of ventral spot patterns in the great crested newt (Triturus cristatus) versus the genotypic fingerprint of individuals based on highly polymorphic microsatellite loci using GENECAP. Between 2008 and 2010, we captured, sampled and photographed adult newts and calculated for 1648 samples/photographs recapture rates for both approaches. Recapture rates differed slightly with 8.34% for GENECAP and 9.83% for AMPHIDENT. With an estimated rate of 2% false rejections (FRR) and 0.00% false acceptances (FAR), AMPHIDENT proved to be a highly reliable algorithm for CMR studies of large datasets. We conclude that the application of automatic recognition software of individual photographs can be a rather powerful and reliable tool in noninvasive CMR studies for a large number of individuals. Because the cross-correlation of standardized shape patterns is generally applicable to any pattern that provides enough information, this algorithm is capable of becoming a single application with broad use in CMR studies for many species.
Stichworte
standardized cross-correlation;
Wild-ID;
application;
single-use;
shape patterns;
GENECAP;
noninvasive individual recognition
Erscheinungsjahr
2015
Zeitschriftentitel
Ecology and Evolution
Band
5
Ausgabe
1
Seite(n)
141-151
ISSN
2045-7758
Page URI
https://pub.uni-bielefeld.de/record/2719024
Zitieren
Drechsler A, Helling T, Steinfartz S. Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies. Ecology and Evolution. 2015;5(1):141-151.
Drechsler, A., Helling, T., & Steinfartz, S. (2015). Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies. Ecology and Evolution, 5(1), 141-151. doi:10.1002/ece3.1340
Drechsler, Axel, Helling, Tobias, and Steinfartz, Sebastian. 2015. “Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies”. Ecology and Evolution 5 (1): 141-151.
Drechsler, A., Helling, T., and Steinfartz, S. (2015). Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies. Ecology and Evolution 5, 141-151.
Drechsler, A., Helling, T., & Steinfartz, S., 2015. Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies. Ecology and Evolution, 5(1), p 141-151.
A. Drechsler, T. Helling, and S. Steinfartz, “Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies”, Ecology and Evolution, vol. 5, 2015, pp. 141-151.
Drechsler, A., Helling, T., Steinfartz, S.: Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies. Ecology and Evolution. 5, 141-151 (2015).
Drechsler, Axel, Helling, Tobias, and Steinfartz, Sebastian. “Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture-mark-recapture studies”. Ecology and Evolution 5.1 (2015): 141-151.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
8 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Testing the applicability of tagging the Great crested newt (Triturus cristatus) using passive integrated transponders.
Weber L, Šmejkal M, Bartoň D, Rulík M., PLoS One 14(7), 2019
PMID: 31283761
Weber L, Šmejkal M, Bartoň D, Rulík M., PLoS One 14(7), 2019
PMID: 31283761
Genotyping validates photo-identification by the head scale pattern in a large population of the European adder (Vipera berus).
Bauwens D, Claus K, Mergeay J., Ecol Evol 8(5), 2018
PMID: 29531711
Bauwens D, Claus K, Mergeay J., Ecol Evol 8(5), 2018
PMID: 29531711
Comparison of photo-matching algorithms commonly used for photographic capture-recapture studies.
Matthé M, Sannolo M, Winiarski K, Spitzen-van der Sluijs A, Goedbloed D, Steinfartz S, Stachow U., Ecol Evol 7(15), 2017
PMID: 28811886
Matthé M, Sannolo M, Winiarski K, Spitzen-van der Sluijs A, Goedbloed D, Steinfartz S, Stachow U., Ecol Evol 7(15), 2017
PMID: 28811886
Fragile coexistence of a global chytrid pathogen with amphibian populations is mediated by environment and demography.
Spitzen-van der Sluijs A, Canessa S, Martel A, Pasmans F., Proc Biol Sci 284(1864), 2017
PMID: 28978729
Spitzen-van der Sluijs A, Canessa S, Martel A, Pasmans F., Proc Biol Sci 284(1864), 2017
PMID: 28978729
Effects of Photo and Genotype-Based Misidentification Error on Estimates of Survival, Detection and State Transition using Multistate Survival Models.
Winiarski KJ, McGarigal K., PLoS One 11(1), 2016
PMID: 26751208
Winiarski KJ, McGarigal K., PLoS One 11(1), 2016
PMID: 26751208
Photographic identification of individuals of a free-ranging, small terrestrial vertebrate.
Treilibs CE, Pavey CR, Hutchinson MN, Bull CM., Ecol Evol 6(3), 2016
PMID: 26865967
Treilibs CE, Pavey CR, Hutchinson MN, Bull CM., Ecol Evol 6(3), 2016
PMID: 26865967
The cutaneous lipid composition of bat wing and tail membranes: a case of convergent evolution with birds.
Ben-Hamo M, Muñoz-Garcia A, Larrain P, Pinshow B, Korine C, Williams JB., Proc Biol Sci 283(1833), 2016
PMID: 27335420
Ben-Hamo M, Muñoz-Garcia A, Larrain P, Pinshow B, Korine C, Williams JB., Proc Biol Sci 283(1833), 2016
PMID: 27335420
Linking habitat suitability to demography in a pond-breeding amphibian.
Unglaub B, Steinfartz S, Drechsler A, Schmidt BR., Front Zool 12(), 2015
PMID: 25977702
Unglaub B, Steinfartz S, Drechsler A, Schmidt BR., Front Zool 12(), 2015
PMID: 25977702
45 References
Daten bereitgestellt von Europe PubMed Central.
Methods for anaesthetizing and marking larval anurans
Som C., 1998
Som C., 1998
Marking and tissue sampling effects on growth and survival in the newt Triturus cristatus
Smithson A., 1999
Smithson A., 1999
An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus
Norman B., 2005
Norman B., 2005
API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives
Overall ADJ., 2004
Overall ADJ., 2004
Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae.
Bendik NF, Morrison TA, Gluesenkamp AG, Sanders MS, O'Donnell LJ., PLoS ONE 8(3), 2013
PMID: 23555669
Bendik NF, Morrison TA, Gluesenkamp AG, Sanders MS, O'Donnell LJ., PLoS ONE 8(3), 2013
PMID: 23555669
A computer-assisted system for photographic mark–recapture analysis
Farid H., 2012
Farid H., 2012
Photographic identification of individual Archey's Frogs, Leiopelma archeyi, from natural markings
Bradfield KS., 2004
Bradfield KS., 2004
An evaluation of some marking and trapping techniques currently used in the study of anuran population dynamics
Brown LJ., 1997
Brown LJ., 1997
The effect of toe clipping on survival in Fowler's Toad (Bufo woodhousei fowleri
Clarke RD., 1972
Clarke RD., 1972
A photographic mark-recapture method for patterned amphibians
Doody JS., 1995
Doody JS., 1995
Ortmann's funnel trap – a highly efficient tool for monitoring amphibian species
Steinfartz S., 2010
Steinfartz S., 2010
What remains from a 454 run: estimation of success rates of microsatellite loci development in selected newt species (Calotriton asper, Lissotriton helveticus, and Triturus cristatus) and comparison with Illumina based approaches
Drechsler A, Geller D, Freund K, Schmeller DS, Künzel S, Rupp O., 2013
Drechsler A, Geller D, Freund K, Schmeller DS, Künzel S, Rupp O., 2013
Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana.
Eggert LS, Eggert JA, Woodruff DS., Mol. Ecol. 12(6), 2003
PMID: 12755869
Eggert LS, Eggert JA, Woodruff DS., Mol. Ecol. 12(6), 2003
PMID: 12755869
Multi-scale features for identifying individuals in large biological databases: an application of pattern recognition technology to the marbled salamander Ambystoma opacum
McGarigal K., 2008
McGarigal K., 2008
PIT tagging: simple technology at its best
Andrews KA., 2004
Andrews KA., 2004
Hardy-Weinberg quality control.
Gomes I, Collins A, Lonjou C, Thomas NS, Wilkinson J, Watson M, Morton N., Ann. Hum. Genet. 63(Pt 6), 1999
PMID: 11246455
Gomes I, Collins A, Lonjou C, Thomas NS, Wilkinson J, Watson M, Morton N., Ann. Hum. Genet. 63(Pt 6), 1999
PMID: 11246455
Identification of newt specimens (Urodela, Triturus) by recording the belly pattern and a description of photographic equipment for such registrations
Hagstrom T., 1973
Hagstrom T., 1973
More on toe-clipping
Halliday T., 1995
Halliday T., 1995
Foster J., 2011
Population size, migrations and feeding aggregations of the humpback whale (Megaptera novaenangliae) in the Western North Atlantic Ocean
Beard JA., 1990
Beard JA., 1990
Evaluation of the photographic identification method (PIM) as a tool to identify adult Litoria genimaculata (Anura: Hylidae)
Alford RA., 2009
Alford RA., 2009
Microsatellite loci in the crested newt (Triturus cristatus) and their utility in other newt taxa
Krupa AP, Jehle R, Dawson DA, Gentle LK, Gibbs M, Arntzen JW., 2002
Krupa AP, Jehle R, Dawson DA, Gentle LK, Gibbs M, Arntzen JW., 2002
Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies
Anderson DR., 1992
Anderson DR., 1992
Distinctive image features from scale-invariant keypoints
Lowe DG., 2004
Lowe DG., 2004
Review of capture-recapture methods applicable to noninvasive genetic sampling.
Lukacs PM, Burnham KP., Mol. Ecol. 14(13), 2005
PMID: 16262847
Lukacs PM, Burnham KP., Mol. Ecol. 14(13), 2005
PMID: 16262847
Crested newt (Triturus cristatus superspecies) populations in Salzburg, Austria, their distribution, size and conservation status
Kyek M., 2008
Kyek M., 2008
Computergestützte Bildanalyse von Bauchfleckenmustern des Kammmolchs (Triturus cristatus
Berger G., 2008
Berger G., 2008
Clarifying the effect of toe clipping on frogs with Bayesian statistics
Parris KM., 2004
Parris KM., 2004
Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions
Schwartz MK., 2004
Schwartz MK., 2004
An empirical exploration of data quality in DNA-based population inventories.
Paetkau D., Mol. Ecol. 12(6), 2003
PMID: 12755868
Paetkau D., Mol. Ecol. 12(6), 2003
PMID: 12755868
The optimal number of markers in genetic capture–mark–recapture studies
Paetkau D., 2004
Paetkau D., 2004
A genetic analogue of 'mark-recapture' methods for estimating population size: an approach based on molecular parentage assessments.
Pearse DE, Eckerman CM, Janzen FJ, Avise JC., Mol. Ecol. 10(11), 2001
PMID: 11883884
Pearse DE, Eckerman CM, Janzen FJ, Avise JC., Mol. Ecol. 10(11), 2001
PMID: 11883884
Toe-clipping as an acceptable method of identifying individual anurans in mark recapture studies
Phillott AD, Skerratt LF, McDonald K, Lemckert FL, Hines HB, Clark JM., 2007
Phillott AD, Skerratt LF, McDonald K, Lemckert FL, Hines HB, Clark JM., 2007
Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense.
Powell RA, Proulx G., ILAR J 44(4), 2003
PMID: 13130157
Powell RA, Proulx G., ILAR J 44(4), 2003
PMID: 13130157
Empirical evaluation of non-invasive capture–mark– recapture estimation of population size based on a single sampling session
Petit EJ., 2007
Petit EJ., 2007
Photographic identification in reptiles: a matter of scales
Sacchi R, Sacli S, Pelliteri-Rosa D, Pupin D, Gentilli A, Tettamanti S., 2010
Sacchi R, Sacli S, Pelliteri-Rosa D, Pupin D, Gentilli A, Tettamanti S., 2010
Use of a fluorescent marking technique on small terrestrial anurans
Schlaepfer MA., 1998
Schlaepfer MA., 1998
Evidence for recent gene flow between north-eastern and south-eastern Madagascan poison frogs from a phylogeography of the Mantella cowani group.
Rabemananjara FC, Chiari Y, Ramilijaona OR, Vences M., Front. Zool. 4(), 2007
PMID: 17207286
Rabemananjara FC, Chiari Y, Ramilijaona OR, Vences M., Front. Zool. 4(), 2007
PMID: 17207286
GIMLET: a computer program for analysing genetic individual identification data
Valière N., 2002
Valière N., 2002
A computer-aided program for pattern-matching of natural marks on the spotted raggedtooth shark Carcharias taurus
Peddemors VM., 2007
Peddemors VM., 2007
An alphanumeric code for toeclipping amphibians and reptiles
Waichman AV., 1992
Waichman AV., 1992
GENECAP: a program for analysis of multilocus genotype data for non-invasive sampling and capture-recapture population estimation
Dreher BP., 2004
Dreher BP., 2004
The use of visual and automatized behavioral markers to assess methodologies: a study case on PIT-tagging in the Alpine newt.
Winandy L, Denoel M., Behav Res Methods 43(2), 2011
PMID: 21359908
Winandy L, Denoel M., Behav Res Methods 43(2), 2011
PMID: 21359908
Genetic tagging of free-ranging black and brown bears
Strobeck C., 1999
Strobeck C., 1999
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 25628871
PubMed | Europe PMC
Suchen in