Enzymatic Halogenation of Tryptophan on a Gram Scale

Frese M, Sewald N (2015)
Angewandte Chemie International Edition 54(1): 298-301.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Halogenated arenes are important building blocks in medicinal and agrochemistry. Chemical electrophilic aromatic halogenation requires molecular halogen, whereas FAD-dependent halogenases form halogenated arenes with high regioselectivity while only halide salts and O-2 are required. This reaction proceeds at room temperature in aqueous media. However, enzymatic halogenation is considered inefficient, mainly because halogenases are not stable. Thus, the preparative application remained elusive. We were able to show that the long-term stability and, hence, the preparative efficiency of the tryptophan-7-halogenase RebH can be significantly improved by immobilization together with the other enzymes required for cofactor regeneration. We established a facile scalable method suitable for the halogenation of tryptophan and its derivatives on a gram scale using a solid, multifunctional, and recyclable biocatalyst; this immobilization strategy might also be applicable for other FAD-dependent halogenases.
sustainable chemistry; regioselectivity; halogenases; biocatalysis; enzyme immobilization
Angewandte Chemie International Edition
Page URI


Frese M, Sewald N. Enzymatic Halogenation of Tryptophan on a Gram Scale. Angewandte Chemie International Edition. 2015;54(1):298-301.
Frese, M., & Sewald, N. (2015). Enzymatic Halogenation of Tryptophan on a Gram Scale. Angewandte Chemie International Edition, 54(1), 298-301. https://doi.org/10.1002/anie.201408561
Frese, Marcel, and Sewald, Norbert. 2015. “Enzymatic Halogenation of Tryptophan on a Gram Scale”. Angewandte Chemie International Edition 54 (1): 298-301.
Frese, M., and Sewald, N. (2015). Enzymatic Halogenation of Tryptophan on a Gram Scale. Angewandte Chemie International Edition 54, 298-301.
Frese, M., & Sewald, N., 2015. Enzymatic Halogenation of Tryptophan on a Gram Scale. Angewandte Chemie International Edition, 54(1), p 298-301.
M. Frese and N. Sewald, “Enzymatic Halogenation of Tryptophan on a Gram Scale”, Angewandte Chemie International Edition, vol. 54, 2015, pp. 298-301.
Frese, M., Sewald, N.: Enzymatic Halogenation of Tryptophan on a Gram Scale. Angewandte Chemie International Edition. 54, 298-301 (2015).
Frese, Marcel, and Sewald, Norbert. “Enzymatic Halogenation of Tryptophan on a Gram Scale”. Angewandte Chemie International Edition 54.1 (2015): 298-301.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation.
Ismail M, Schroeder L, Frese M, Kottke T, Hollmann F, Paul CE, Sewald N., ACS Catal 9(2), 2019
PMID: 30775067
Unusual substrate and halide versatility of phenolic halogenase PltM.
Mori S, Pang AH, Thamban Chandrika N, Garneau-Tsodikova S, Tsodikov OV., Nat Commun 10(1), 2019
PMID: 30890712
Halogenase engineering and its utility in medicinal chemistry.
Fraley AE, Sherman DH., Bioorg Med Chem Lett 28(11), 2018
PMID: 29731363
A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination.
Neubauer PR, Widmann C, Wibberg D, Schröder L, Frese M, Kottke T, Kalinowski J, Niemann HH, Sewald N., PLoS One 13(5), 2018
PMID: 29746521
Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities.
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D., Biology (Basel) 7(3), 2018
PMID: 30072664
An Engineered Tryptophan Synthase Opens New Enzymatic Pathways to β-Methyltryptophan and Derivatives.
Francis D, Winn M, Latham J, Greaney MF, Micklefield J., Chembiochem 18(4), 2017
PMID: 28005309
Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS., Chem Rev 117(8), 2017
PMID: 28106994
A High-Throughput Fluorescence Assay to Determine the Activity of Tryptophan Halogenases.
Schnepel C, Minges H, Frese M, Sewald N., Angew Chem Int Ed Engl 55(45), 2016
PMID: 27618794
Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.
Menon BR, Latham J, Dunstan MS, Brandenburger E, Klemstein U, Leys D, Karthikeyan C, Greaney MF, Shepherd SA, Micklefield J., Org Biomol Chem 14(39), 2016
PMID: 27714222
Directed evolution of RebH for site-selective halogenation of large biologically active molecules.
Payne JT, Poor CB, Lewis JC., Angew Chem Int Ed Engl 54(14), 2015
PMID: 25678465
Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes.
Shepherd SA, Karthikeyan C, Latham J, Struck AW, Thompson ML, Menon BRK, Styles MQ, Levy C, Leys D, Micklefield J., Chem Sci 6(6), 2015
PMID: 29511510
Halogenase Engineering for the Generation of New Natural Product Analogues.
Brown S, O'Connor SE., Chembiochem 16(15), 2015
PMID: 26256103

30 References

Daten bereitgestellt von Europe PubMed Central.

Fauvarque, Pure Appl. Chem. 68(), 1996

AUTHOR UNKNOWN, Angew. Chem. 112(), 2000
Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
Yeh E, Cole LJ, Barr EW, Bollinger JM Jr, Ballou DP, Walsh CT., Biochemistry 45(25), 2006
PMID: 16784243
The structure of flavin-dependent tryptophan 7-halogenase RebH.
Bitto E, Huang Y, Bingman CA, Singh S, Thorson JS, Phillips GN Jr., Proteins 70(1), 2008
PMID: 17876823
New insights into the mechanism of enzymatic chlorination of tryptophan.
Flecks S, Patallo EP, Zhu X, Ernyei AJ, Seifert G, Schneider A, Dong C, Naismith JH, van Pee KH., Angew. Chem. Int. Ed. Engl. 47(49), 2008
PMID: 18979475

AUTHOR UNKNOWN, Angew. Chem. 120(), 2008
Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination.
Dong C, Flecks S, Unversucht S, Haupt C, van Pee KH, Naismith JH., Science 309(5744), 2005
PMID: 16195462
Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
Zhu X, De Laurentis W, Leang K, Herrmann J, Ihlefeld K, van Pee KH, Naismith JH., J. Mol. Biol. 391(1), 2009
PMID: 19501593
Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases.
Yeh E, Blasiak LC, Koglin A, Drennan CL, Walsh CT., Biochemistry 46(5), 2007
PMID: 17260957
A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005.
Zehner S, Kotzsch A, Bister B, Sussmuth RD, Mendez C, Salas JA, van Pee KH., Chem. Biol. 12(4), 2005
PMID: 15850981

Seibold, Biocatal. Biotransform. 24(), 2006
Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis.
Clouthier CM, Pelletier JN., Chem Soc Rev 41(4), 2012
PMID: 22234546
Enzyme immobilisation in biocatalysis: why, what and how.
Sheldon RA, van Pelt S., Chem Soc Rev 42(15), 2013
PMID: 23532151
Regioselective arene halogenation using the FAD-dependent halogenase RebH.
Payne JT, Andorfer MC, Lewis JC., Angew. Chem. Int. Ed. Engl. 52(20), 2013
PMID: 23592388

AUTHOR UNKNOWN, Angew. Chem. 125(), 2013

Muffler, Chem. Ing. Tech. 82(), 2010
Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution.
Poor CB, Andorfer MC, Lewis JC., Chembiochem 15(9), 2014
PMID: 24849696

Hölzer, Adv. Synth. Catal. 343(), 2001

Perez, Adv. Synth. Catal. 351(), 2009

Schroer, Org. Process Res. Dev. 11(), 2007


Frese, ChemCatChem 6(), 2014
Cross-linked aggregates of multimeric enzymes: a simple and efficient methodology to stabilize their quaternary structure.
Wilson L, Betancor L, Fernandez-Lorente G, Fuentes M, Hidalgo A, Guisan JM, Pessela BC, Fernandez-Lafuente R., Biomacromolecules 5(3), 2004
PMID: 15132665

Sheldon, Org. Process Res. Dev. 15(), 2011


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 25394328
PubMed | Europe PMC

Suchen in

Google Scholar