Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing

Schierenbeck L, Ries D, Rogge K, Grewe S, Weisshaar B, Kruse O (2015)
BMC Genomics 16: 57.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Background: High light tolerance of microalgae is a desired phenotype for efficient cultivation in large scale production systems under fluctuating outdoor conditions. Outdoor cultivation requires the use of either wild-type or non-GMO derived mutant strains due to safety concerns. The identification and molecular characterization of such mutants derived from untagged forward genetics approaches was limited previously by the tedious and time-consuming methods involving techniques such as classical meiotic mapping. The combination of mapping with next generation sequencing technologies offers alternative strategies to identify genes involved in high light adaptation in untagged mutants. Results: We used the model alga Chlamydomonas reinhardtii in a non-GMO mutation strategy without any preceding crossing step or pooled progeny to identify genes involved in the regulatory processes of high light adaptation. To generate high light tolerant mutants, wildtype cells were mutagenized only to a low extent, followed by a stringent selection. We performed whole-genome sequencing of two independent mutants hit1 and hit2 and the parental wildtype. The availability of a reference genome sequence and the removal of shared bakground variants between the wildtype strain and each mutant, enabled us to identify two single nucleotide polymorphisms within the same gene Cre02.g085050, hereafter called LRS1 (putative Light Response Signaling protein 1). These two independent single amino acid exchanges are both located in the putative WD40 propeller domain of the corresponding protein LRS1. Both mutants exhibited an increased rate of non-photochemical-quenching (NPQ) and an improved resistance against chemically induced reactive oxygen species. In silico analyses revealed homology of LRS1 to the photoregulatory protein COP1 in plants. Conclusions: In this work we identified the nuclear encoded gene LRS1 as an essential factor for high light adaptation in C. reinhardtii. The causative random mutation within this gene was identified by a rapid and efficient method, avoiding any preceding crossing step, meiotic mapping, or pooled progeny. Our results open up new insights into mechanisms of high light adaptation in microalgae and at the same time provide a simplified strategy for non-GMO forward genetics, a crucial precondition that could result in the identification of key factors for economically relevant biological processes within algae.
Erscheinungsjahr
Zeitschriftentitel
BMC Genomics
Band
16
Art.-Nr.
57
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Schierenbeck L, Ries D, Rogge K, Grewe S, Weisshaar B, Kruse O. Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics. 2015;16: 57.
Schierenbeck, L., Ries, D., Rogge, K., Grewe, S., Weisshaar, B., & Kruse, O. (2015). Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics, 16, 57. doi:10.1186/s12864-015-1232-y
Schierenbeck, L., Ries, D., Rogge, K., Grewe, S., Weisshaar, B., and Kruse, O. (2015). Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 16:57.
Schierenbeck, L., et al., 2015. Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics, 16: 57.
L. Schierenbeck, et al., “Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing”, BMC Genomics, vol. 16, 2015, : 57.
Schierenbeck, L., Ries, D., Rogge, K., Grewe, S., Weisshaar, B., Kruse, O.: Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics. 16, : 57 (2015).
Schierenbeck, Lisa, Ries, David, Rogge, Kristin, Grewe, Sabrina, Weisshaar, Bernd, and Kruse, Olaf. “Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing”. BMC Genomics 16 (2015): 57.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-02-24T12:45:35Z

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biomass from microalgae: the potential of domestication towards sustainable biofactories.
Benedetti M, Vecchi V, Barera S, Dall'Osto L., Microb Cell Fact 17(1), 2018
PMID: 30414618
Genome complexity of harmful microalgae.
Casabianca S, Cornetti L, Capellacci S, Vernesi C, Penna A., Harmful Algae 63(), 2017
PMID: 28366402
UV-B Perception and Acclimation in Chlamydomonas reinhardtii.
Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, Schmid-Siegert E, Goldschmidt-Clermont M, Ulm R., Plant Cell 28(4), 2016
PMID: 27020958
A Population of Deletion Mutants and an Integrated Mapping and Exome-seq Pipeline for Gene Discovery in Maize.
Jia S, Li A, Morton K, Avoles-Kianian P, Kianian SF, Zhang C, Holding D., G3 (Bethesda) 6(8), 2016
PMID: 27261000
High-throughput mutation, selection, and phenotype screening of mutant methanogenic archaea.
Walter ME, Ortiz A, Sondgeroth C, Sindt NM, Duszenko N, Catlett JL, Zhou Y, Valloppilly S, Anderson C, Fernando S, Buan NR., J Microbiol Methods 131(), 2016
PMID: 27771305
UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.
Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong TB, Niyogi KK, Ulm R, Goldschmidt-Clermont M., Proc Natl Acad Sci U S A 113(51), 2016
PMID: 27930292
Genetic tools and techniques for Chlamydomonas reinhardtii.
Mussgnug JH., Appl Microbiol Biotechnol 99(13), 2015
PMID: 26025017

94 References

Daten bereitgestellt von Europe PubMed Central.

Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.
Wijffels RH, Kruse O, Hellingwerf KJ., Curr. Opin. Biotechnol. 24(3), 2013
PMID: 23647970

AUTHOR UNKNOWN, 0
Microalgae as substrates for fermentative biogas production in a combined biorefinery concept.
Mussgnug JH, Klassen V, Schluter A, Kruse O., J. Biotechnol. 150(1), 2010
PMID: 20691224
The Chlamydomonas genome reveals the evolution of key animal and plant functions.
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR., Science 318(5848), 2007
PMID: 17932292
The Chlamydomonas genome project: a decade on.
Blaby IK, Blaby-Haas CE, Tourasse N, Hom EF, Lopez D, Aksoy M, Grossman A, Umen J, Dutcher S, Porter M, King S, Witman GB, Stanke M, Harris EH, Goodstein D, Grimwood J, Schmutz J, Vallon O, Merchant SS, Prochnik S., Trends Plant Sci. 19(10), 2014
PMID: 24950814
Genetically engineered algae for biofuels: a Key role for ecologists
Snow AA, Smith VH., 2012
Overcoming biological constraints to enable the exploitation of microalgae for biofuels.
Day JG, Slocombe SP, Stanley MS., Bioresour. Technol. 109(), 2011
PMID: 21680178
Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference.
Mitra M, Kirst H, Dewez D, Melis A., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367(1608), 2012
PMID: 23148270
Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene.
Kirst H, Garcia-Cerdan JG, Zurbriggen A, Ruehle T, Melis A., Plant Physiol. 160(4), 2012
PMID: 23043081
Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors.
Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R., Photosyn. Res. 108(2-3), 2011
PMID: 21547493
Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion.
Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B., Plant Biotechnol. J. 5(6), 2007
PMID: 17764518
RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.
Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kugler J, Ringsmuth AK, Kruse O, Hankamer B., PLoS ONE 8(4), 2013
PMID: 23613840
Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii.
Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O., J. Biotechnol. 142(1), 2009
PMID: 19480949
Optimization of photosynthetic light energy utilization by microalgae
Perrine Z, Negi S, Sayre RT., 2012
Light requirements in microalgal photobioreactors: an overview of biophotonic aspects.
Carvalho AP, Silva SO, Baptista JM, Malcata FX., Appl. Microbiol. Biotechnol. 89(5), 2010
PMID: 21181149

AUTHOR UNKNOWN, 0
Regulation of photosynthetic electron transport and photoinhibition.
Roach T, Krieger-Liszkay A., Curr. Protein Pept. Sci. 15(4), 2014
PMID: 24678670
PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches.
Niyogi KK., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012213
Too much of a good thing: light can be bad for photosynthesis.
Barber J, Andersson B., Trends Biochem. Sci. 17(2), 1992
PMID: 1566330
Photoinhibition of photosynthesis in nature
Long SP, Humphries S, Falkowski PG., 1994
Management of oxidative stress by microalgae.
Cirulis JT, Scott JA, Ross GM., Can. J. Physiol. Pharmacol. 91(1), 2013
PMID: 23368282
Genomsequenzierung zur Identifikation von Mutationen
Nowrousian M., 2013
Fast-forward genetics enabled by new sequencing technologies.
Schneeberger K, Weigel D., Trends Plant Sci. 16(5), 2011
PMID: 21439889
User guide for mapping-by-sequencing in Arabidopsis.
James GV, Patel V, Nordstrom KJ, Klasen JR, Salome PA, Weigel D, Schneeberger K., Genome Biol. 14(6), 2013
PMID: 23773572

AUTHOR UNKNOWN, 0
SHOREmap: simultaneous mapping and mutation identification by deep sequencing.
Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU., Nat. Methods 6(8), 2009
PMID: 19644454
C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy.
Doitsidou M, Poole RJ, Sarin S, Bigelow H, Hobert O., PLoS ONE 5(11), 2010
PMID: 21079745
Mutation mapping and identification by whole-genome sequencing.
Leshchiner I, Alexa K, Kelsey P, Adzhubei I, Austin-Tse CA, Cooney JD, Anderson H, King MJ, Stottmann RW, Garnaas MK, Ha S, Drummond IA, Paw BH, North TE, Beier DR, Goessling W, Sunyaev SR., Genome Res. 22(8), 2012
PMID: 22555591
Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing.
Blumenstiel JP, Noll AC, Griffiths JA, Perera AG, Walton KN, Gilliland WD, Hawley RS, Staehling-Hampton K., Genetics 182(1), 2009
PMID: 19307605
A strategy for direct mapping and identification of mutations by whole-genome sequencing.
Zuryn S, Le Gras S, Jamet K, Jarriault S., Genetics 186(1), 2010
PMID: 20610404
Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing.
Bowen ME, Henke K, Siegfried KR, Warman ML, Harris MP., Genetics 190(3), 2011
PMID: 22174069
RNA-seq-based mapping and candidate identification of mutations from forward genetic screens.
Miller AC, Obholzer ND, Shah AN, Megason SG, Moens CB., Genome Res. 23(4), 2013
PMID: 23299976
Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers.
Nordstrom KJ, Albani MC, James GV, Gutjahr C, Hartwig B, Turck F, Paszkowski U, Coupland G, Schneeberger K., Nat. Biotechnol. 31(4), 2013
PMID: 23475072
Mapping epigenetic mutations in fission yeast using whole-genome next-generation sequencing.
Irvine DV, Goto DB, Vaughn MW, Nakaseko Y, McCombie WR, Yanagida M, Martienssen R., Genome Res. 19(6), 2009
PMID: 19423874
Mutants of Chlamydomonas reinhardtii resistant to very high light
Förster B, Osmond CB, Boynton JE, Gillham NW., 1999
Estimate of the spontaneous mutation rate in Chlamydomonas reinhardtii.
Ness RW, Morgan AD, Colegrave N, Keightley PD., Genetics 192(4), 2012
PMID: 23051642
WD40 proteins propel cellular networks.
Stirnimann CU, Petsalaki E, Russell RB, Muller CW., Trends Biochem. Sci. 35(10), 2010
PMID: 20451393
Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival.
Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, Martin SS, Pellegrini M, Niyogi KK, Merchant SS, Grossman AR, Lagarias JC., Proc. Natl. Acad. Sci. U.S.A. 110(9), 2013
PMID: 23345435
COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain.
Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH., Cell 71(5), 1992
PMID: 1423630
The photomorphogenic repressors COP1 and DET1: 20 years later.
Lau OS, Deng XW., Trends Plant Sci. 17(10), 2012
PMID: 22705257
Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas.
Galvan A, Gonzalez-Ballester D, Fernandez E., Adv. Exp. Med. Biol. 616(), 2007
PMID: 18161492
Insertional mutagenesis in mice: new perspectives and tools.
Carlson CM, Largaespada DA., Nat. Rev. Genet. 6(7), 2005
PMID: 15995698
Caenorhabditis elegans mutant allele identification by whole-genome sequencing.
Sarin S, Prabhu S, O'Meara MM, Pe'er I, Hobert O., Nat. Methods 5(10), 2008
PMID: 18677319
Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks.
Hartwig B, James GV, Konrad K, Schneeberger K, Turck F., Plant Physiol. 160(2), 2012
PMID: 22837357
Whole-Genome Sequencing to Identify Mutants and Polymorphisms in Chlamydomonas reinhardtii.
Dutcher SK, Li L, Lin H, Meyer L, Giddings TH Jr, Kwan AL, Lewis BL., G3 (Bethesda) 2(1), 2012
PMID: 22384377
Drift-barrier hypothesis and mutation-rate evolution.
Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M., Proc. Natl. Acad. Sci. U.S.A. 109(45), 2012
PMID: 23077252
UV-induced DNA damage and repair: a review.
Sinha RP, Hader DP., Photochem. Photobiol. Sci. 1(4), 2002
PMID: 12661961
Physicochemical mechanism of light-driven DNA repair by (6-4) photolyases.
Faraji S, Dreuw A., Annu Rev Phys Chem 65(), 2013
PMID: 24364918
An ancient light-harvesting protein is critical for the regulation of algal photosynthesis.
Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK., Nature 462(7272), 2009
PMID: 19940928
Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro.
Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R., J. Biol. Chem. 283(13), 2007
PMID: 18070876
Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii.
Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R., PLoS Biol. 9(1), 2011
PMID: 21267060
COP1 - from plant photomorphogenesis to mammalian tumorigenesis.
Yi C, Deng XW., Trends Cell Biol. 15(11), 2005
PMID: 16198569
Structure and function of WD40 domain proteins.
Xu C, Min J., Protein Cell 2(3), 2011
PMID: 21468892
Diversity of WD-repeat proteins
Smith TF., 2008
A novel cysteine-rich sequence motif.
Freemont PS, Hanson IM, Trowsdale J., Cell 64(3), 1991
PMID: 1991318
The RING finger domain: a recent example of a sequence-structure family.
Borden KL, Freemont PS., Curr. Opin. Struct. Biol. 6(3), 1996
PMID: 8804826
RING domains: master builders of molecular scaffolds?
Borden KL., J. Mol. Biol. 295(5), 2000
PMID: 10653689
RING domain E3 ubiquitin ligases.
Deshaies RJ, Joazeiro CA., Annu. Rev. Biochem. 78(), 2009
PMID: 19489725
Light signal transduction in higher plants.
Chen M, Chory J, Fankhauser C., Annu. Rev. Genet. 38(), 2004
PMID: 15568973
Direct interaction of Arabidopsis cryptochromes with COP1 in light control development.
Wang H, Ma LG, Li JM, Zhao HY, Deng XW., Science 294(5540), 2001
PMID: 11509693
Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.
Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hulskamp M, Hoecker U., Plant J. 74(4), 2013
PMID: 23425305
Biodiesel from algae: challenges and prospects.
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG., Curr. Opin. Biotechnol. 21(3), 2010
PMID: 20399634
The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii.
Wykoff DD, Davies JP, Melis A, Grossman AR., Plant Physiol. 117(1), 1998
PMID: 9576782
Chlorophyll fluorescence--a practical guide.
Maxwell K, Johnson GN., J. Exp. Bot. 51(345), 2000
PMID: 10938857
A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor.
Atteia A, Adrait A, Brugiere S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N., Mol. Biol. Evol. 26(7), 2009
PMID: 19349646
AN OPTIMIZED METHOD FOR THE ISOLATION OF NUCLEI FROM CHLAMYDOMONAS REINHARDTII (CHLOROPHYCEAE)¹
Winck FV, Kwasniewski M, Wienkoop S, Mueller-Roeber B., J. Phycol. 47(2), 2011
PMID: IND44563543

AUTHOR UNKNOWN, 0
RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics.
Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B., Nucleic Acids Res. 40(Web Server issue), 2012
PMID: 22684630
Fast and accurate short read alignment with Burrows-Wheeler transform.
Li H, Durbin R., Bioinformatics 25(14), 2009
PMID: 19451168
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
A framework for variation discovery and genotyping using next-generation DNA sequencing data.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ., Nat. Genet. 43(5), 2011
PMID: 21478889

Aho AV, Kernighan BW, Weinberger PJ., 1987

AUTHOR UNKNOWN, 0
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.
Thorvaldsdottir H, Robinson JT, Mesirov JP., Brief. Bioinformatics 14(2), 2012
PMID: 22517427

AUTHOR UNKNOWN, 0
COFACTOR: an accurate comparative algorithm for structure-based protein function annotation.
Roy A, Yang J, Zhang Y., Nucleic Acids Res. 40(Web Server issue), 2012
PMID: 22570420
I-TASSER server for protein 3D structure prediction.
Zhang Y., BMC Bioinformatics 9(), 2008
PMID: 18215316

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25730202
PubMed | Europe PMC

Suchen in

Google Scholar