Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates
Radek A, Krumbach K, Gaetgens J, Wendisch VF, Wiechert W, Bott M, Noack S, Marienhagen J (2014)
Journal of Biotechnology 192: 156-160.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Radek, Andreas;
Krumbach, Karin;
Gaetgens, Jochem;
Wendisch, Volker F.UniBi ;
Wiechert, Wolfgang;
Bott, Michael;
Noack, Stephan;
Marienhagen, Jan
Einrichtung
Abstract / Bemerkung
Biomass-derived D-xylose represents an economically interesting substrate for the sustainable microbial production of value-added compounds. The industrially important platform organism Corynebacterium glutamicum has already been engineered to grow on this pentose as sole carbon and energy source. However, all currently described C. glutamicum strains utilize D-xylose via the commonly known isomerase pathway that leads to a significant carbon loss in the form of CO2, in particular, when aiming for the synthesis of alpha-ketoglutarate and its derivatives (e.g. L-glutamate). Driven by the motivation to engineer a more carbon-efficient C. glutamicum strain, we functionally integrated the Weimberg pathway from Caulobacter crescentus in C. glutamicum. This five-step pathway, encoded by the xylXABCD-operon, enabled a recombinant C. glutamicum strain to utilize D-xylose in D-xylose/D-glucose mixtures. Interestingly, this strain exhibited a tri-phasic growth behavior and transiently accumulated D-xylonate during D-xylose utilization in the second growth phase. However, this intermediate of the implemented oxidative pathway was re-consumed in the third growth phase leading to more biomass formation. Furthermore, C. glutamicum pEKEx3-xylXABCD(Cc) was also able to grow on D-xylose as sole carbon and energy source with a maximum growth rate of mu(max) = 0.07 +/- 0.01 h(-1). These results render C. glutamicum pEKEx3-xylXABCD(Cc) a promising starting point for the engineering of efficient production strains, exhibiting only minimal carbon loss on D-xylose containing substrates. (C) 2014 Elsevier B.V. All rights reserved.
Stichworte
D-Xylose;
Corynebacterium glutamicum;
Metabolic engineering;
Weimberg;
pathway;
alpha-Ketoglutarate
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of Biotechnology
Band
192
Seite(n)
156-160
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2717570
Zitieren
Radek A, Krumbach K, Gaetgens J, et al. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology. 2014;192:156-160.
Radek, A., Krumbach, K., Gaetgens, J., Wendisch, V. F., Wiechert, W., Bott, M., Noack, S., et al. (2014). Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology, 192, 156-160. doi:10.1016/j.jbiotec.2014.09.026
Radek, Andreas, Krumbach, Karin, Gaetgens, Jochem, Wendisch, Volker F., Wiechert, Wolfgang, Bott, Michael, Noack, Stephan, and Marienhagen, Jan. 2014. “Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates”. Journal of Biotechnology 192: 156-160.
Radek, A., Krumbach, K., Gaetgens, J., Wendisch, V. F., Wiechert, W., Bott, M., Noack, S., and Marienhagen, J. (2014). Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology 192, 156-160.
Radek, A., et al., 2014. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology, 192, p 156-160.
A. Radek, et al., “Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates”, Journal of Biotechnology, vol. 192, 2014, pp. 156-160.
Radek, A., Krumbach, K., Gaetgens, J., Wendisch, V.F., Wiechert, W., Bott, M., Noack, S., Marienhagen, J.: Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology. 192, 156-160 (2014).
Radek, Andreas, Krumbach, Karin, Gaetgens, Jochem, Wendisch, Volker F., Wiechert, Wolfgang, Bott, Michael, Noack, Stephan, and Marienhagen, Jan. “Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates”. Journal of Biotechnology 192 (2014): 156-160.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
26 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Alone at last! - Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum.
Brüsseler C, Späth A, Sokolowsky S, Marienhagen J., Metab Eng Commun 9(), 2019
PMID: 31016135
Brüsseler C, Späth A, Sokolowsky S, Marienhagen J., Metab Eng Commun 9(), 2019
PMID: 31016135
Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum.
Lange J, Müller F, Takors R, Blombach B., Microb Biotechnol 11(1), 2018
PMID: 29115043
Lange J, Müller F, Takors R, Blombach B., Microb Biotechnol 11(1), 2018
PMID: 29115043
Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
Rossoni L, Carr R, Baxter S, Cortis R, Thorpe T, Eastham G, Stephens G., Microbiology 164(3), 2018
PMID: 29458683
Rossoni L, Carr R, Baxter S, Cortis R, Thorpe T, Eastham G, Stephens G., Microbiology 164(3), 2018
PMID: 29458683
Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway.
Wasserstrom L, Portugal-Nunes D, Almqvist H, Sandström AG, Lidén G, Gorwa-Grauslund MF., AMB Express 8(1), 2018
PMID: 29508097
Wasserstrom L, Portugal-Nunes D, Almqvist H, Sandström AG, Lidén G, Gorwa-Grauslund MF., AMB Express 8(1), 2018
PMID: 29508097
Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate.
Mao Y, Li G, Chang Z, Tao R, Cui Z, Wang Z, Tang YJ, Chen T, Zhao X., Biotechnol Biofuels 11(), 2018
PMID: 29636817
Mao Y, Li G, Chang Z, Tao R, Cui Z, Wang Z, Tang YJ, Chen T, Zhao X., Biotechnol Biofuels 11(), 2018
PMID: 29636817
Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
Kawaguchi H, Yoshihara K, Hara KY, Hasunuma T, Ogino C, Kondo A., Microb Cell Fact 17(1), 2018
PMID: 29773073
Kawaguchi H, Yoshihara K, Hara KY, Hasunuma T, Ogino C, Kondo A., Microb Cell Fact 17(1), 2018
PMID: 29773073
Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms.
Valdehuesa KNG, Ramos KRM, Nisola GM, Bañares AB, Cabulong RB, Lee WK, Liu H, Chung WJ., Appl Microbiol Biotechnol 102(18), 2018
PMID: 30003296
Valdehuesa KNG, Ramos KRM, Nisola GM, Bañares AB, Cabulong RB, Lee WK, Liu H, Chung WJ., Appl Microbiol Biotechnol 102(18), 2018
PMID: 30003296
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories.
Kim D, Woo HM., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30238140
Kim D, Woo HM., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30238140
Tracing metabolism from lignocellulosic biomass and gaseous substrates to products with stable-isotopes.
Gonzalez JE, Antoniewicz MR., Curr Opin Biotechnol 43(), 2017
PMID: 27780112
Gonzalez JE, Antoniewicz MR., Curr Opin Biotechnol 43(), 2017
PMID: 27780112
Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli.
Cabulong RB, Valdehuesa KN, Ramos KR, Nisola GM, Lee WK, Lee CR, Chung WJ., Enzyme Microb Technol 97(), 2017
PMID: 28010767
Cabulong RB, Valdehuesa KN, Ramos KR, Nisola GM, Lee WK, Lee CR, Chung WJ., Enzyme Microb Technol 97(), 2017
PMID: 28010767
Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
Jo S, Yoon J, Lee SM, Um Y, Han SO, Woo HM., J Biotechnol 258(), 2017
PMID: 28153765
Jo S, Yoon J, Lee SM, Um Y, Han SO, Woo HM., J Biotechnol 258(), 2017
PMID: 28153765
A rapid method for analysis of fermentatively produced D-xylonate using ultra-high performance liquid chromatography and evaporative light scattering detection.
Almqvist H, Sandahl M, Lidén G., Biosci Biotechnol Biochem 81(6), 2017
PMID: 28485215
Almqvist H, Sandahl M, Lidén G., Biosci Biotechnol Biochem 81(6), 2017
PMID: 28485215
Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved d-xylose utilization.
Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S., Bioresour Technol 245(pt b), 2017
PMID: 28552568
Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S., Bioresour Technol 245(pt b), 2017
PMID: 28552568
Redesigning metabolism based on orthogonality principles.
Pandit AV, Srinivasan S, Mahadevan R., Nat Commun 8(), 2017
PMID: 28555623
Pandit AV, Srinivasan S, Mahadevan R., Nat Commun 8(), 2017
PMID: 28555623
Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development.
Chen R, Dou J., Biotechnol Lett 38(2), 2016
PMID: 26466596
Chen R, Dou J., Biotechnol Lett 38(2), 2016
PMID: 26466596
Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose.
Lee J, Saddler JN, Um Y, Woo HM., Microb Cell Fact 15(), 2016
PMID: 26801253
Lee J, Saddler JN, Um Y, Woo HM., Microb Cell Fact 15(), 2016
PMID: 26801253
Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.
Tai YS, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K., Nat Chem Biol 12(4), 2016
PMID: 26854668
Tai YS, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K., Nat Chem Biol 12(4), 2016
PMID: 26854668
Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S., J Biotechnol 231(), 2016
PMID: 27297548
Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S., J Biotechnol 231(), 2016
PMID: 27297548
The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH., J Biotechnol 234(), 2016
PMID: 27491712
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH., J Biotechnol 234(), 2016
PMID: 27491712
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, Marienhagen J., Appl Environ Microbiol 81(6), 2015
PMID: 25595770
Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, Marienhagen J., Appl Environ Microbiol 81(6), 2015
PMID: 25595770
Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping.
Unthan S, Radek A, Wiechert W, Oldiges M, Noack S., Microb Cell Fact 14(), 2015
PMID: 25888907
Unthan S, Radek A, Wiechert W, Oldiges M, Noack S., Microb Cell Fact 14(), 2015
PMID: 25888907
Functional Characterization of Corynebacterium alkanolyticum β-Xylosidase and Xyloside ABC Transporter in Corynebacterium glutamicum.
Watanabe A, Hiraga K, Suda M, Yukawa H, Inui M., Appl Environ Microbiol 81(12), 2015
PMID: 25862223
Watanabe A, Hiraga K, Suda M, Yukawa H, Inui M., Appl Environ Microbiol 81(12), 2015
PMID: 25862223
Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products.
Heider SA, Wendisch VF., Biotechnol J 10(8), 2015
PMID: 26216246
Heider SA, Wendisch VF., Biotechnol J 10(8), 2015
PMID: 26216246
Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
Kim EM, Um Y, Bott M, Woo HM., FEMS Microbiol Lett 362(19), 2015
PMID: 26363018
Kim EM, Um Y, Bott M, Woo HM., FEMS Microbiol Lett 362(19), 2015
PMID: 26363018
30 References
Daten bereitgestellt von Europe PubMed Central.
Metabolic engineering applications to renewable resource utilization.
Aristidou A, Penttila M., Curr. Opin. Biotechnol. 11(2), 2000
PMID: 10753763
Aristidou A, Penttila M., Curr. Opin. Biotechnol. 11(2), 2000
PMID: 10753763
Poly(triol α-ketoglutarate) as biodegradable chemoselective, and mechanically tunable elastomers
Barrett, Macromolecules 41(), 2008
Barrett, Macromolecules 41(), 2008
Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey.
Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP., Appl. Environ. Microbiol. 70(5), 2004
PMID: 15128544
Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP., Appl. Environ. Microbiol. 70(5), 2004
PMID: 15128544
Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains.
Blombach B, Seibold GM., Appl. Microbiol. Biotechnol. 86(5), 2010
PMID: 20333512
Blombach B, Seibold GM., Appl. Microbiol. Biotechnol. 86(5), 2010
PMID: 20333512
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
The E2 domain of OdhA of Corynebacterium glutamicum has succinyltransferase activity dependent on lipoyl residues of the acetyltransferase AceF.
Hoffelder M, Raasch K, van Ooyen J, Eggeling L., J. Bacteriol. 192(19), 2010
PMID: 20675489
Hoffelder M, Raasch K, van Ooyen J, Eggeling L., J. Bacteriol. 192(19), 2010
PMID: 20675489
D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii.
Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schonheit P., J. Biol. Chem. 284(40), 2009
PMID: 19584053
Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schonheit P., J. Biol. Chem. 284(40), 2009
PMID: 19584053
Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization.
Kang MK, Lee J, Um Y, Lee TS, Bott M, Park SJ, Woo HM., Appl. Microbiol. Biotechnol. 98(13), 2014
PMID: 24706215
Kang MK, Lee J, Um Y, Lee TS, Bott M, Park SJ, Woo HM., Appl. Microbiol. Biotechnol. 98(13), 2014
PMID: 24706215
Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum.
Kaß F, Junne S, Neubauer P, Wiechert W, Oldiges M., Microb. Cell Fact. 13(), 2014
PMID: 24410842
Kaß F, Junne S, Neubauer P, Wiechert W, Oldiges M., Microb. Cell Fact. 13(), 2014
PMID: 24410842
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon.
Keilhauer C, Eggeling L, Sahm H., J. Bacteriol. 175(17), 1993
PMID: 8366043
Keilhauer C, Eggeling L, Sahm H., J. Bacteriol. 175(17), 1993
PMID: 8366043
d-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120
Köhler, Environ. Microbiol. (), 2014
Köhler, Environ. Microbiol. (), 2014
A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose.
Kotrba P, Inui M, Yukawa H., Microbiology (Reading, Engl.) 149(Pt 6), 2003
PMID: 12777497
Kotrba P, Inui M, Yukawa H., Microbiology (Reading, Engl.) 149(Pt 6), 2003
PMID: 12777497
Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei.
London J, Hausman S., J. Bacteriol. 150(2), 1982
PMID: 6802797
London J, Hausman S., J. Bacteriol. 150(2), 1982
PMID: 6802797
Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12.
Meijnen JP, de Winde JH, Ruijssenaars HJ., Appl. Environ. Microbiol. 75(9), 2009
PMID: 19270113
Meijnen JP, de Winde JH, Ruijssenaars HJ., Appl. Environ. Microbiol. 75(9), 2009
PMID: 19270113
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Overproduction and secretion of α-ketoglutaric acid by microorganisms.
Otto C, Yovkova V, Barth G., Appl. Microbiol. Biotechnol. 92(4), 2011
PMID: 21964641
Otto C, Yovkova V, Barth G., Appl. Microbiol. Biotechnol. 92(4), 2011
PMID: 21964641
Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms
Paczia, Microb. Cell Fact. (), 2012
Paczia, Microb. Cell Fact. (), 2012
Evaluation of the hexokinase-glucose-6-phosphate dehydrogenase method of determination of glucose in urine.
Peterson JI, Young DS., Anal. Biochem. 23(2), 1968
PMID: 5657801
Peterson JI, Young DS., Anal. Biochem. 23(2), 1968
PMID: 5657801
Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli.
Reiner AM., J. Bacteriol. 132(1), 1977
PMID: 334721
Reiner AM., J. Bacteriol. 132(1), 1977
PMID: 334721
An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform.
Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M., Microb. Cell Fact. 11(), 2012
PMID: 23113930
Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M., Microb. Cell Fact. 11(), 2012
PMID: 23113930
Sambrook, 2001
Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars.
Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 85(1), 2009
PMID: 19529932
Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 85(1), 2009
PMID: 19529932
Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation.
Sasaki M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 86(4), 2009
PMID: 20012280
Sasaki M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 86(4), 2009
PMID: 20012280
Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum.
Schneider J, Niermann K, Wendisch VF., J. Biotechnol. 154(2-3), 2010
PMID: 20638422
Schneider J, Niermann K, Wendisch VF., J. Biotechnol. 154(2-3), 2010
PMID: 20638422
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus.
Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U., J. Bacteriol. 189(5), 2006
PMID: 17172333
Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U., J. Bacteriol. 189(5), 2006
PMID: 17172333
White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses.
Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D., J. Ind. Microbiol. Biotechnol. 32(11-12), 2005
PMID: 15995855
Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D., J. Ind. Microbiol. Biotechnol. 32(11-12), 2005
PMID: 15995855
Xylitol: a review of its action on mutans streptococci and dental plaque--its clinical significance.
Trahan L., Int Dent J 45(1 Suppl 1), 1995
PMID: 7607748
Trahan L., Int Dent J 45(1 Suppl 1), 1995
PMID: 7607748
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 25304460
PubMed | Europe PMC
Suchen in