Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates

Radek A, Krumbach K, Gaetgens J, Wendisch VF, Wiechert W, Bott M, Noack S, Marienhagen J (2014)
Journal of Biotechnology 192: 156-160.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
Biomass-derived D-xylose represents an economically interesting substrate for the sustainable microbial production of value-added compounds. The industrially important platform organism Corynebacterium glutamicum has already been engineered to grow on this pentose as sole carbon and energy source. However, all currently described C. glutamicum strains utilize D-xylose via the commonly known isomerase pathway that leads to a significant carbon loss in the form of CO2, in particular, when aiming for the synthesis of alpha-ketoglutarate and its derivatives (e.g. L-glutamate). Driven by the motivation to engineer a more carbon-efficient C. glutamicum strain, we functionally integrated the Weimberg pathway from Caulobacter crescentus in C. glutamicum. This five-step pathway, encoded by the xylXABCD-operon, enabled a recombinant C. glutamicum strain to utilize D-xylose in D-xylose/D-glucose mixtures. Interestingly, this strain exhibited a tri-phasic growth behavior and transiently accumulated D-xylonate during D-xylose utilization in the second growth phase. However, this intermediate of the implemented oxidative pathway was re-consumed in the third growth phase leading to more biomass formation. Furthermore, C. glutamicum pEKEx3-xylXABCD(Cc) was also able to grow on D-xylose as sole carbon and energy source with a maximum growth rate of mu(max) = 0.07 +/- 0.01 h(-1). These results render C. glutamicum pEKEx3-xylXABCD(Cc) a promising starting point for the engineering of efficient production strains, exhibiting only minimal carbon loss on D-xylose containing substrates. (C) 2014 Elsevier B.V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
Journal of Biotechnology
Band
192
Seite(n)
156-160
ISSN
PUB-ID

Zitieren

Radek A, Krumbach K, Gaetgens J, et al. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology. 2014;192:156-160.
Radek, A., Krumbach, K., Gaetgens, J., Wendisch, V. F., Wiechert, W., Bott, M., Noack, S., et al. (2014). Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology, 192, 156-160. doi:10.1016/j.jbiotec.2014.09.026
Radek, A., Krumbach, K., Gaetgens, J., Wendisch, V. F., Wiechert, W., Bott, M., Noack, S., and Marienhagen, J. (2014). Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology 192, 156-160.
Radek, A., et al., 2014. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology, 192, p 156-160.
A. Radek, et al., “Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates”, Journal of Biotechnology, vol. 192, 2014, pp. 156-160.
Radek, A., Krumbach, K., Gaetgens, J., Wendisch, V.F., Wiechert, W., Bott, M., Noack, S., Marienhagen, J.: Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology. 192, 156-160 (2014).
Radek, Andreas, Krumbach, Karin, Gaetgens, Jochem, Wendisch, Volker F., Wiechert, Wolfgang, Bott, Michael, Noack, Stephan, and Marienhagen, Jan. “Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates”. Journal of Biotechnology 192 (2014): 156-160.

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
Rossoni L, Carr R, Baxter S, Cortis R, Thorpe T, Eastham G, Stephens G., Microbiology 164(3), 2018
PMID: 29458683
Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway.
Wasserstrom L, Portugal-Nunes D, Almqvist H, Sandström AG, Lidén G, Gorwa-Grauslund MF., AMB Express 8(1), 2018
PMID: 29508097
Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate.
Mao Y, Li G, Chang Z, Tao R, Cui Z, Wang Z, Tang YJ, Chen T, Zhao X., Biotechnol Biofuels 11(), 2018
PMID: 29636817
Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms.
Valdehuesa KNG, Ramos KRM, Nisola GM, Bañares AB, Cabulong RB, Lee WK, Liu H, Chung WJ., Appl Microbiol Biotechnol 102(18), 2018
PMID: 30003296
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli.
Cabulong RB, Valdehuesa KN, Ramos KR, Nisola GM, Lee WK, Lee CR, Chung WJ., Enzyme Microb Technol 97(), 2017
PMID: 28010767
Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved d-xylose utilization.
Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S., Bioresour Technol 245(pt b), 2017
PMID: 28552568
Redesigning metabolism based on orthogonality principles.
Pandit AV, Srinivasan S, Mahadevan R., Nat Commun 8(), 2017
PMID: 28555623
Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.
Tai YS, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K., Nat Chem Biol 12(4), 2016
PMID: 26854668
Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S., J Biotechnol 231(), 2016
PMID: 27297548
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, Marienhagen J., Appl Environ Microbiol 81(6), 2015
PMID: 25595770
Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping.
Unthan S, Radek A, Wiechert W, Oldiges M, Noack S., Microb Cell Fact 14(), 2015
PMID: 25888907

30 References

Daten bereitgestellt von Europe PubMed Central.

Metabolic engineering applications to renewable resource utilization.
Aristidou A, Penttila M., Curr. Opin. Biotechnol. 11(2), 2000
PMID: 10753763
Poly(triol α-ketoglutarate) as biodegradable chemoselective, and mechanically tunable elastomers
Barrett, Macromolecules 41(), 2008
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii.
Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schonheit P., J. Biol. Chem. 284(40), 2009
PMID: 19584053
Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization.
Kang MK, Lee J, Um Y, Lee TS, Bott M, Park SJ, Woo HM., Appl. Microbiol. Biotechnol. 98(13), 2014
PMID: 24706215
Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum.
Kaß F, Junne S, Neubauer P, Wiechert W, Oldiges M., Microb. Cell Fact. 13(), 2014
PMID: 24410842
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
d-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120
Köhler, Environ. Microbiol. (), 2014
Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12.
Meijnen JP, de Winde JH, Ruijssenaars HJ., Appl. Environ. Microbiol. 75(9), 2009
PMID: 19270113
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Overproduction and secretion of α-ketoglutaric acid by microorganisms.
Otto C, Yovkova V, Barth G., Appl. Microbiol. Biotechnol. 92(4), 2011
PMID: 21964641
Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms
Paczia, Microb. Cell Fact. (), 2012
An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform.
Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M., Microb. Cell Fact. 11(), 2012
PMID: 23113930

Sambrook, 2001
Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars.
Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 85(1), 2009
PMID: 19529932
Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation.
Sasaki M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 86(4), 2009
PMID: 20012280
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus.
Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U., J. Bacteriol. 189(5), 2006
PMID: 17172333
White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses.
Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D., J. Ind. Microbiol. Biotechnol. 32(11-12), 2005
PMID: 15995855
Pentose oxidation by Pseudomonas fragi.
WEIMBERG R., J. Biol. Chem. 236(), 1961
PMID: 13783864

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25304460
PubMed | Europe PMC

Suchen in

Google Scholar