Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome

Hense A, Herman E, Oldemeyer S, Kottke T (2015)
Journal of Biological Chemistry 290(3): 1743-1751.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2015
Zeitschriftentitel
Journal of Biological Chemistry
Band
290
Ausgabe
3
Seite(n)
1743-1751
ISSN
0021-9258
Page URI
https://pub.uni-bielefeld.de/record/2717475

Zitieren

Hense A, Herman E, Oldemeyer S, Kottke T. Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome. Journal of Biological Chemistry. 2015;290(3):1743-1751.
Hense, A., Herman, E., Oldemeyer, S., & Kottke, T. (2015). Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome. Journal of Biological Chemistry, 290(3), 1743-1751. doi:10.1074/jbc.M114.606327
Hense, Anika, Herman, Elena, Oldemeyer, Sabine, and Kottke, Tilman. 2015. “Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome”. Journal of Biological Chemistry 290 (3): 1743-1751.
Hense, A., Herman, E., Oldemeyer, S., and Kottke, T. (2015). Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome. Journal of Biological Chemistry 290, 1743-1751.
Hense, A., et al., 2015. Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome. Journal of Biological Chemistry, 290(3), p 1743-1751.
A. Hense, et al., “Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome”, Journal of Biological Chemistry, vol. 290, 2015, pp. 1743-1751.
Hense, A., Herman, E., Oldemeyer, S., Kottke, T.: Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome. Journal of Biological Chemistry. 290, 1743-1751 (2015).
Hense, Anika, Herman, Elena, Oldemeyer, Sabine, and Kottke, Tilman. “Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome”. Journal of Biological Chemistry 290.3 (2015): 1743-1751.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Photoreceptors Take Charge: Emerging Principles for Light Sensing.
Kottke T, Xie A, Larsen DS, Hoff WD., Annu Rev Biophys (), 2018
PMID: 29539272
Ion mobility action spectroscopy of flavin dianions reveals deprotomer-dependent photochemistry.
Bull JN, Carrascosa E, Giacomozzi L, Bieske EJ, Stockett MH., Phys Chem Chem Phys 20(29), 2018
PMID: 30014081
Optogenetic activation of Plexin-B1 reveals contact repulsion between osteoclasts and osteoblasts.
Deb Roy A, Yin T, Choudhary S, Rodionov V, Pilbeam CC, Wu YI., Nat Commun 8(), 2017
PMID: 28635959
Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine.
Kopka B, Magerl K, Savitsky A, Davari MD, Röllen K, Bocola M, Dick B, Schwaneberg U, Jaeger KE, Krauss U., Sci Rep 7(1), 2017
PMID: 29042655
Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y., J Plant Res 129(2), 2016
PMID: 26810763
Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
Ganguly A, Manahan CC, Top D, Yee EF, Lin C, Young MW, Thiel W, Crane BR., Proc Natl Acad Sci U S A 113(36), 2016
PMID: 27551082
Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
El-Esawi M, Glascoe A, Engle D, Ritz T, Link J, Ahmad M., Plant Signal Behav 10(9), 2015
PMID: 26313597

60 References

Daten bereitgestellt von Europe PubMed Central.

The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2.
Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR., Proc. Natl. Acad. Sci. U.S.A. 95(5), 1998
PMID: 9482948
Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins.
Hughes RM, Vrana JD, Song J, Tucker CL., J. Biol. Chem. 287(26), 2012
PMID: 22577138
Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
Somers DE, Devlin PF, Kay SA., Science 282(5393), 1998
PMID: 9822379
Regulation of flowering time by Arabidopsis photoreceptors.
Guo H, Yang H, Mockler TC, Lin C., Science 279(5355), 1998
PMID: 9478898
From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening.
Mao J, Zhang YC, Sang Y, Li QH, Yang HQ., Proc. Natl. Acad. Sci. U.S.A. 102(34), 2005
PMID: 16093319
Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana.
Danon A, Coll NS, Apel K., Proc. Natl. Acad. Sci. U.S.A. 103(45), 2006
PMID: 17075038
Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1.
Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR., Science 269(5226), 1995
PMID: 7638620
Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1.
Bouly JP, Giovani B, Djamei A, Mueller M, Zeugner A, Dudkin EA, Batschauer A, Ahmad M., Eur. J. Biochem. 270(14), 2003
PMID: 12846824
Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.
Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J., Proc. Natl. Acad. Sci. U.S.A. 101(33), 2004
PMID: 15299148
The C termini of Arabidopsis cryptochromes mediate a constitutive light response.
Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR., Cell 103(5), 2000
PMID: 11114337
Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2.
Yu X, Shalitin D, Liu X, Maymon M, Klejnot J, Yang H, Lopez J, Zhao X, Bendehakkalu KT, Lin C., Proc. Natl. Acad. Sci. U.S.A. 104(17), 2007
PMID: 17438275
Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
Langenbacher T, Immeln D, Dick B, Kottke T., J. Am. Chem. Soc. 131(40), 2009
PMID: 19754110
Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor.
Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ., Proc. Natl. Acad. Sci. U.S.A. 109(13), 2012
PMID: 22421133
Light-induced electron transfer in a cryptochrome blue-light photoreceptor.
Giovani B, Byrdin M, Ahmad M, Brettel K., Nat. Struct. Biol. 10(6), 2003
PMID: 12730688
The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A., J. Biol. Chem. 282(20), 2007
PMID: 17355959
Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M., J. Biol. Chem. 282(13), 2007
PMID: 17237227
Lifetimes of Arabidopsis cryptochrome signaling states in vivo.
Herbel V, Orth C, Wenzel R, Ahmad M, Bittl R, Batschauer A., Plant J. 74(4), 2013
PMID: 23398192
Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
Li X, Wang Q, Yu X, Liu H, Yang H, Zhao C, Liu X, Tan C, Klejnot J, Zhong D, Lin C., Proc. Natl. Acad. Sci. U.S.A. 108(51), 2011
PMID: 22139370
Searching for a photocycle of the cryptochrome photoreceptors.
Liu B, Liu H, Zhong D, Lin C., Curr. Opin. Plant Biol. 13(5), 2010
PMID: 20943427
Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins.
Immeln D, Pokorny R, Herman E, Moldt J, Batschauer A, Kottke T., J Phys Chem B 114(51), 2010
PMID: 21128641
Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor.
Partch CL, Clarkson MW, Ozgur S, Lee AL, Sancar A., Biochemistry 44(10), 2005
PMID: 15751956
Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
Kondoh M, Shiraishi C, Muller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M., J. Mol. Biol. 413(1), 2011
PMID: 21875594
Unexpected electron transfer in cryptochrome identified by time-resolved EPR spectroscopy.
Biskup T, Hitomi K, Getzoff ED, Krapf S, Koslowski T, Schleicher E, Weber S., Angew. Chem. Int. Ed. Engl. 50(52), 2011
PMID: 22086606
Variable electron transfer pathways in an amphibian cryptochrome: tryptophan versus tyrosine-based radical pairs.
Biskup T, Paulus B, Okafuji A, Hitomi K, Getzoff ED, Weber S, Schleicher E., J. Biol. Chem. 288(13), 2013
PMID: 23430261
Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.
Brazard J, Usman A, Lacombat F, Ley C, Martin MM, Plaza P, Mony L, Heijde M, Zabulon G, Bowler C., J. Am. Chem. Soc. 132(13), 2010
PMID: 20222748
Origin of light-induced spin-correlated radical pairs in cryptochrome.
Weber S, Biskup T, Okafuji A, Marino AR, Berthold T, Link G, Hitomi K, Getzoff ED, Schleicher E, Norris JR Jr., J Phys Chem B 114(45), 2010
PMID: 20684534
Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function.
Zeugner A, Byrdin M, Bouly JP, Bakrim N, Giovani B, Brettel K, Ahmad M., J. Biol. Chem. 280(20), 2005
PMID: 15774475
Decrypting cryptochrome: revealing the molecular identity of the photoactivation reaction.
Solov'yov IA, Domratcheva T, Moughal Shahi AR, Schulten K., J. Am. Chem. Soc. 134(43), 2012
PMID: 23009093
ATP binding turns plant cryptochrome into an efficient natural photoswitch.
Muller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K., Sci Rep 4(), 2014
PMID: 24898692
Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis.
Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS, Rossi C, Casal JJ., Plant Physiol. 154(1), 2010
PMID: 20668058
Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
Kottke T, Batschauer A, Ahmad M, Heberle J., Biochemistry 45(8), 2006
PMID: 16489739
Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1.
Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly JP, Bittl R, Heberle J, Ahmad M., Angew. Chem. Int. Ed. Engl. 51(37), 2012
PMID: 22890584
Indication for a radical intermediate preceding the signaling state in the LOV domain photocycle.
Bauer C, Rabl CR, Heberle J, Kottke T., Photochem. Photobiol. 87(3), 2011
PMID: 21255020
The photophysics of flavins: What makes the difference between gas phase and aqueous solution?
Salzmann S., Tatchen J., Marian C.., 2008
The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein.
Raffelberg S, Gutt A, Gartner W, Mandalari C, Abbruzzetti S, Viappiani C, Losi A., Biol. Chem. 394(11), 2013
PMID: 23828427
Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome.
Burney S, Hoang N, Caruso M, Dudkin EA, Ahmad M, Bouly JP., FEBS Lett. 583(9), 2009
PMID: 19327354
A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E., J. Biol. Chem. 282(17), 2007
PMID: 17298948
Flavin radicals: chemistry and biochemistry.
Muller F., Free Radic. Biol. Med. 3(3), 1987
PMID: 3311900
Redox-triggered FTIR difference spectra of FAD in aqueous solution and bound to flavoproteins.
Wille G, Ritter M, Friedemann R, Mantele W, Hubner G., Biochemistry 42(50), 2003
PMID: 14674755
Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.
Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H., Biochemistry 51(29), 2012
PMID: 22747528
Infrared spectroscopy of proteins.
Barth A., Biochim. Biophys. Acta 1767(9), 2007
PMID: 17692815
Evaluation of the information content in infrared spectra for protein secondary structure determination.
Goormaghtigh E, Ruysschaert JM, Raussens V., Biophys. J. 90(8), 2006
PMID: 16428280
Flavin reduction activates Drosophila cryptochrome.
Vaidya AT, Top D, Manahan CC, Tokuda JM, Zhang S, Pollack L, Young MW, Crane BR., Proc. Natl. Acad. Sci. U.S.A. 110(51), 2013
PMID: 24297896
ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.
Cailliez F, Muller P, Gallois M, de la Lande A., J. Am. Chem. Soc. 136(37), 2014
PMID: 25157750
Electron nuclear double resonance differentiates complementary roles for active site histidines in (6-4) photolyase.
Schleicher E, Hitomi K, Kay CW, Getzoff ED, Todo T, Weber S., J. Biol. Chem. 282(7), 2006
PMID: 17164245
Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase.
Henbest KB, Maeda K, Hore PJ, Joshi M, Bacher A, Bittl R, Weber S, Timmel CR, Schleicher E., Proc. Natl. Acad. Sci. U.S.A. 105(38), 2008
PMID: 18799743
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25471375
PubMed | Europe PMC

Suchen in

Google Scholar