Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information

van Dam L, Ernst MO (2015)
PLoS Computational Biology 11(3): e1004172.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Alternativer Titel
Mapping Shape to Visuomotor Mapping
Abstract / Bemerkung
Humans can learn and store multiple visuomotor mappings (dual-adaptation) when feedback for each is provided alternately. Moreover, learned context cues associated with each mapping can be used to switch between the stored mappings. However, little is known about the associative learning between cue and required visuomotor mapping, and how learning generalises to novel but similar conditions. To investigate these questions, participants performed a rapid target-pointing task while we manipulated the offset between visual feedback and movement end-points. The visual feedback was presented with horizontal offsets of different amounts, dependent on the targets shape. Participants thus needed to use different visuomotor mappings between target location and required motor response depending on the target shape in order to “hit” it. The target shapes were taken from a continuous set of shapes, morphed between spiky and circular shapes. After training we tested participants performance, without feedback, on different target shapes that had not been learned previously. We compared two hypotheses. First, we hypothesised that participants could (explicitly) extract the linear relationship between target shape and visuomotor mapping and generalise accordingly. Second, using previous findings of visuomotor learning, we developed a (implicit) Bayesian learning model that predicts generalisation that is more consistent with categorisation (i.e. use one mapping or the other). The experimental results show that, although learning the associations requires explicit awareness of the cues’ role, participants apply the mapping corresponding to the trained shape that is most similar to the current one, consistent with the Bayesian learning model. Furthermore, the Bayesian learning model predicts that learning should slow down with increased numbers of training pairs, which was confirmed by the present results. In short, we found a good correspondence be- tween the Bayesian learning model and the empirical results indicating that this model poses a possible mechanism for simultaneously learning multiple visuomotor mappings.
Stichworte
Bayes Theorem; Learning; Kalman Filter; Generalisation; Visuomotor behaviour
Erscheinungsjahr
2015
Zeitschriftentitel
PLoS Computational Biology
Band
11
Ausgabe
3
Art.-Nr.
e1004172
ISSN
1553-734X
eISSN
1553-7358
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2717405

Zitieren

van Dam L, Ernst MO. Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information. PLoS Computational Biology. 2015;11(3): e1004172.
van Dam, L., & Ernst, M. O. (2015). Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information. PLoS Computational Biology, 11(3), e1004172. doi:10.1371/journal.pcbi.1004172
van Dam, Loes, and Ernst, Marc O. 2015. “Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information”. PLoS Computational Biology 11 (3): e1004172.
van Dam, L., and Ernst, M. O. (2015). Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information. PLoS Computational Biology 11:e1004172.
van Dam, L., & Ernst, M.O., 2015. Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information. PLoS Computational Biology, 11(3): e1004172.
L. van Dam and M.O. Ernst, “Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information”, PLoS Computational Biology, vol. 11, 2015, : e1004172.
van Dam, L., Ernst, M.O.: Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information. PLoS Computational Biology. 11, : e1004172 (2015).
van Dam, Loes, and Ernst, Marc O. “Mapping Shape to Visuomotor Mapping: Learning and Generalisation of Sensorimotor Behaviour Based on Contextual Information”. PLoS Computational Biology 11.3 (2015): e1004172.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:37:08Z
MD5 Prüfsumme
aaf13ec0adeb9186e8a853bbd98ccfc5


4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Value generalization in human avoidance learning.
Norbury A, Robbins TW, Seymour B., Elife 7(), 2018
PMID: 29735014
Optimal visual-haptic integration with articulated tools.
Takahashi C, Watt SJ., Exp Brain Res 235(5), 2017
PMID: 28214998

45 References

Daten bereitgestellt von Europe PubMed Central.

Experience can change the 'light-from-above' prior.
Adams WJ, Graf EW, Ernst MO., Nat. Neurosci. 7(10), 2004
PMID: 15361877
Learning Bayesian priors for depth perception.
Knill DC., J Vis 7(8), 2007
PMID: 17685820
Plasticity in sensory-motor systems.
Held R., Sci. Am. 213(5), 1965
PMID: 5828465
Human sensorimotor learning: adaptation, skill, and beyond.
Krakauer JW, Mazzoni P., Curr. Opin. Neurobiol. 21(4), 2011
PMID: 21764294
Principles of sensorimotor learning.
Wolpert DM, Diedrichsen J, Flanagan JR., Nat. Rev. Neurosci. 12(12), 2011
PMID: 22033537
Constraints on learning new mappings between perceptual dimensions
AUTHOR UNKNOWN, 1989
Rapid topographical plasticity of the visuomotor spatial transformation.
Fernandez-Ruiz J, Diaz R, Moreno-Briseno P, Campos-Romo A, Ojeda R., J. Neurosci. 26(7), 2006
PMID: 16481431
Switching between visuomotor mappings: learning absolute mappings or relative shifts.
van Dam LC, Hawellek DJ, Ernst MO., J Vis 13(2), 2013
PMID: 23447680
Discriminative conditioning of prism adaptation
AUTHOR UNKNOWN, 1971
Conditioned adaptation to prismatic displacement
AUTHOR UNKNOWN, 1972
Conditioned adaptation to prismatic displacement: training trials and decay.
Kravitz JH, Yaffe FL., J Exp Psychol 102(2), 1974
PMID: 4811940
Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations.
Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT., Brain 119 ( Pt 4)(), 1996
PMID: 8813283
Conditioned adaptation to prismatic displacement with a tone as the conditional stimulus
AUTHOR UNKNOWN, 1972
Context-dependent arm pointing adaptation.
Seidler RD, Bloomberg JJ, Stelmach GE, Bloomberg JJ., Behav. Brain Res. 119(2), 2001
PMID: 11165331
Adaptation to split-field wedge prism spectacles.
Pick HL Jr, Hay JC, Martin R., J Exp Psychol 80(1), 1969
PMID: 5787407
Learning motor synergies makes use of information on muscular load.
Fernandez-Ruiz J, Hall-Haro C, Diaz R, Mischner J, Vergara P, Lopez-Garcia JC., Learn. Mem. 7(4), 2000
PMID: 10940319
A color-contingent prism displacement aftereffect.
Donderi DC, Jolicoeur P, Berg I, Grimes R., Perception 14(6), 1985
PMID: 3837871
Perceptual and cognitive spatial learning.
Bedford FL., J Exp Psychol Hum Percept Perform 19(3), 1993
PMID: 8331313
Prism adaptation to dynamic events.
Field DP, Shipley TF, Cunningham DW., Percept Psychophys 61(1), 1999
PMID: 10070208
Generalization of prism adaptation.
Redding GM, Wallace B., J Exp Psychol Hum Percept Perform 32(4), 2006
PMID: 16846294
Adaptation to a visuomotor shift depends on the starting posture.
Baraduc P, Wolpert DM., J. Neurophysiol. 88(2), 2002
PMID: 12163546
Prism adaptation of reaching movements: specificity for the velocity of reaching.
Kitazawa S, Kimura T, Uka T., J. Neurosci. 17(4), 1997
PMID: 9006989
The statistical determinants of adaptation rate in human reaching.
Burge J, Ernst MO, Banks MS., J Vis 8(4), 2008
PMID: 18484859
Signatures of synchrony in pairwise count correlations.
Tchumatchenko T, Geisel T, Volgushev M, Wolf F., Front Comput Neurosci 4(), 2010
PMID: 20422044
Modular decomposition in visuomotor learning.
Ghahramani Z, Wolpert DM., Nature 386(6623), 1997
PMID: 9121554
Extrapolation: The sine qua non for abstraction in function learning
AUTHOR UNKNOWN, 1997
Predicting transfer performance: a comparison of competing function learning models.
McDaniel MA, Dimperio E, Griego JA, Busemeyer JR., J Exp Psychol Learn Mem Cogn 35(1), 2009
PMID: 19210089
Are people adapted to their own glasses?
Schot WD, Brenner E, Sousa R, Smeets JB., Perception 41(8), 2012
PMID: 23362676
Lack of adaptation to random conflicting force fields of variable magnitude.
Gupta R, Ashe J., J. Neurophysiol. 97(1), 2006
PMID: 17093124
Gone in 0.6 seconds: the encoding of motor memories depends on recent sensorimotor states.
Howard IS, Ingram JN, Franklin DW, Wolpert DM., J. Neurosci. 32(37), 2012
PMID: 22972999
The effect of contextual cues on the encoding of motor memories.
Howard IS, Wolpert DM, Franklin DW., J. Neurophysiol. 109(10), 2013
PMID: 23446696
Random presentation enables subjects to adapt to two opposing forces on the hand.
Osu R, Hirai S, Yoshioka T, Kawato M., Nat. Neurosci. 7(2), 2004
PMID: 14745452
Motor learning by field approximation.
Gandolfo F, Mussa-Ivaldi FA, Bizzi E., Proc. Natl. Acad. Sci. U.S.A. 93(9), 1996
PMID: 8632977
Acquisition and contextual switching of multiple internal models for different viscous force fields.
Wada Y, Kawabata Y, Kotosaka S, Yamamoto K, Kitazawa S, Kawato M., Neurosci. Res. 46(3), 2003
PMID: 12804793
Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace.
Woolley DG, Tresilian JR, Carson RG, Riek S., Exp Brain Res 179(2), 2006
PMID: 17119942
Explicit and implicit contributions to learning in a sensorimotor adaptation task.
Taylor JA, Krakauer JW, Ivry RB., J. Neurosci. 34(8), 2014
PMID: 24553942

AUTHOR UNKNOWN, 1997

AUTHOR UNKNOWN, 2005
Generalization and similarity in exemplar models of categorization: insights from machine learning.
Jakel F, Scholkopf B, Wichmann FA., Psychon Bull Rev 15(2), 2008
PMID: 18488638
Population of linear experts: knowledge partitioning and function learning.
Kalish ML, Lewandowsky S, Kruschke JK., Psychol Rev 111(4), 2004
PMID: 15482074
A new approach to linear filtering and prediction problems
AUTHOR UNKNOWN, 1960
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25815787
PubMed | Europe PMC

Suchen in

Google Scholar