Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO

Schmal C, Leloup J-C, Gonze D (2014)
In: Plant Circadian Networks. Staiger D (Ed); Methods in Molecular Biology, 1158. Berlin: Springer: 337-358.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schmal, ChristophUniBi; Leloup, Jean-Christophe; Gonze, Didier
Herausgeber*in
Staiger, Dorothee
Abstract / Bemerkung
Circadian clocks are endogenous timekeepers that produce oscillations with a period of about one day. Their rhythmicity originates from complex gene regulatory networks at the cellular level. In the last decades, computational models have been proven to be a powerful tool in order to understand the dynamics and design principles of the complex regulatory circuitries underlying the circadian clocks of different organisms. We present the process of model development using a small and simplified two-gene regulatory network of the Arabidopsis circadian clock. Subsequently, we discuss important numerical techniques to analyze such a mathematical model using XPP-AUTO. We show how to solve deterministic and stochastic ordinary differential equations and how to compute bifurcation diagrams or simulate phase-shift experiments. We finally discuss the contributions of modeling to the understanding and dissection of the Arabidopsis circadian system.
Erscheinungsjahr
2014
Buchtitel
Plant Circadian Networks
Band
1158
Seite(n)
337-358
ISBN
978-1-4939-0699-4
Page URI
https://pub.uni-bielefeld.de/record/2716410

Zitieren

Schmal C, Leloup J-C, Gonze D. Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO. In: Staiger D, ed. Plant Circadian Networks. Methods in Molecular Biology. Vol 1158. Berlin: Springer; 2014: 337-358.
Schmal, C., Leloup, J. - C., & Gonze, D. (2014). Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO. In D. Staiger (Ed.), Methods in Molecular Biology: Vol. 1158. Plant Circadian Networks (pp. 337-358). Berlin: Springer. doi:10.1007/978-1-4939-0700-7_23
Schmal, C., Leloup, J. - C., and Gonze, D. (2014). “Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO” in Plant Circadian Networks, Staiger, D. ed. Methods in Molecular Biology, vol. 1158, (Berlin: Springer), 337-358.
Schmal, C., Leloup, J.-C., & Gonze, D., 2014. Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO. In D. Staiger, ed. Plant Circadian Networks. Methods in Molecular Biology. no.1158 Berlin: Springer, pp. 337-358.
C. Schmal, J.-C. Leloup, and D. Gonze, “Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO”, Plant Circadian Networks, D. Staiger, ed., Methods in Molecular Biology, vol. 1158, Berlin: Springer, 2014, pp.337-358.
Schmal, C., Leloup, J.-C., Gonze, D.: Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO. In: Staiger, D. (ed.) Plant Circadian Networks. Methods in Molecular Biology. 1158, p. 337-358. Springer, Berlin (2014).
Schmal, Christoph, Leloup, Jean-Christophe, and Gonze, Didier. “Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO”. Plant Circadian Networks. Ed. Dorothee Staiger. Berlin: Springer, 2014.Vol. 1158. Methods in Molecular Biology. 337-358.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

An Inactivation Switch Enables Rhythms in a Neurospora Clock Model.
Upadhyay A, Brunner M, Herzel H., Int J Mol Sci 20(12), 2019
PMID: 31248072
Biophysical clocks face a trade-off between internal and external noise resistance.
Pittayakanchit W, Lu Z, Chew J, Rust MJ, Murugan A., Elife 7(), 2018
PMID: 29988019
A Compact Model for the Complex Plant Circadian Clock.
De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze D., Front Plant Sci 7(), 2016
PMID: 26904049

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 24792063
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche