Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells

Weber M, Apostolova G, Widera D, Mittelbronn M, Dechant G, Kaltschmidt B, Rohrer H (2015)
Stem Cells 33(2): 574-588.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Weber, M; Apostolova, G; Widera, DariusUniBi ; Mittelbronn, M; Dechant, G; Kaltschmidt, BarbaraUniBi; Rohrer, H
Abstract / Bemerkung
Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.
Reprogramming; Central nervous system; Peripheral nervous system; Neural crest; Neural stem cell
Stem Cells
Page URI


Weber M, Apostolova G, Widera D, et al. Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells. Stem Cells. 2015;33(2):574-588.
Weber, M., Apostolova, G., Widera, D., Mittelbronn, M., Dechant, G., Kaltschmidt, B., & Rohrer, H. (2015). Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells. Stem Cells, 33(2), 574-588. doi:10.1002/stem.1880
Weber, M, Apostolova, G, Widera, Darius, Mittelbronn, M, Dechant, G, Kaltschmidt, Barbara, and Rohrer, H. 2015. “Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells”. Stem Cells 33 (2): 574-588.
Weber, M., Apostolova, G., Widera, D., Mittelbronn, M., Dechant, G., Kaltschmidt, B., and Rohrer, H. (2015). Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells. Stem Cells 33, 574-588.
Weber, M., et al., 2015. Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells. Stem Cells, 33(2), p 574-588.
M. Weber, et al., “Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells”, Stem Cells, vol. 33, 2015, pp. 574-588.
Weber, M., Apostolova, G., Widera, D., Mittelbronn, M., Dechant, G., Kaltschmidt, B., Rohrer, H.: Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells. Stem Cells. 33, 574-588 (2015).
Weber, M, Apostolova, G, Widera, Darius, Mittelbronn, M, Dechant, G, Kaltschmidt, Barbara, and Rohrer, H. “Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest Derived Peripheral Stem Cells”. Stem Cells 33.2 (2015): 574-588.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative Analysis of Biological Properties of Large-Scale Expanded Adult Neural Crest-Derived Stem Cells Isolated from Human Hair Follicle and Skin Dermis.
Vasyliev RG, Gubar OS, Gordiienko IM, Litvinova LS, Rodnichenko AE, Shupletsova VV, Zlatska AV, Yurova KA, Todosenko NM, Khadzhynova VE, Shulha MV, Novikova SN, Zubov DO., Stem Cells Int 2019(), 2019
PMID: 30915126
SOX10-positive cells emerge in the rat pituitary gland during late embryogenesis and start to express S100β.
Ueharu H, Yoshida S, Kanno N, Horiguchi K, Nishimura N, Kato T, Kato Y., Cell Tissue Res 372(1), 2018
PMID: 29130118
Comparative Characterization of Ischemia-Induced Brain Multipotent Stem Cells with Mesenchymal Stem Cells: Similarities and Differences.
Sakuma R, Takahashi A, Nakano-Doi A, Sawada R, Kamachi S, Beppu M, Takagi T, Yoshimura S, Matsuyama T, Nakagomi T., Stem Cells Dev 27(19), 2018
PMID: 29999479
Novel Regenerative Therapies Based on Regionally Induced Multipotent Stem Cells in Post-Stroke Brains: Their Origin, Characterization, and Perspective.
Takagi T, Yoshimura S, Sakuma R, Nakano-Doi A, Matsuyama T, Nakagomi T., Transl Stroke Res 8(6), 2017
PMID: 28744717
Folate Receptor Alpha Upregulates Oct4, Sox2 and Klf4 and Downregulates miR-138 and miR-let-7 in Cranial Neural Crest Cells.
Mohanty V, Shah A, Allender E, Siddiqui MR, Monick S, Ichi S, Mania-Farnell B, G McLone D, Tomita T, Mayanil CS., Stem Cells 34(11), 2016
PMID: 27300003

97 References

Daten bereitgestellt von Europe PubMed Central.

Douarin, 1999
Assembling neural crest regulatory circuits into a gene regulatory network.
Betancur P, Bronner-Fraser M, Sauka-Spengler T., Annu. Rev. Cell Dev. Biol. 26(), 2010
PMID: 19575671
Insights into neural crest development and evolution from genomic analysis.
Simoes-Costa M, Bronner ME., Genome Res. 23(7), 2013
PMID: 23817048
Neural crest stem and progenitor cells.
Crane JF, Trainor PA., Annu. Rev. Cell Dev. Biol. 22(), 2006
PMID: 16803431
Peripheral nervous system progenitors can be reprogrammed to produce myelinating oligodendrocytes and repair brain lesions.
Binder E, Rukavina M, Hassani H, Weber M, Nakatani H, Reiff T, Parras C, Taylor V, Rohrer H., J. Neurosci. 31(17), 2011
PMID: 21525278
Boundary cap cells are peripheral nervous system stem cells that can be redirected into central nervous system lineages.
Zujovic V, Thibaud J, Bachelin C, Vidal M, Deboux C, Coulpier F, Stadler N, Charnay P, Topilko P, Baron-Van Evercooren A., Proc. Natl. Acad. Sci. U.S.A. 108(26), 2011
PMID: 21670295
In search of the in vivo identity of mesenchymal stem cells.
da Silva Meirelles L, Caplan AI, Nardi NB., Stem Cells 26(9), 2008
PMID: 18566331
Perivascular ancestors of adult multipotent stem cells.
Corselli M, Chen CW, Crisan M, Lazzari L, Peault B., Arterioscler. Thromb. Vasc. Biol. 30(6), 2010
PMID: 20453168
Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts.
Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA., Exp. Hematol. 36(5), 2008
PMID: 18295964
Neuroepithelial cells supply an initial transient wave of MSC differentiation.
Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S., Cell 129(7), 2007
PMID: 17604725
Adult palatum as a novel source of neural crest-related stem cells.
Widera D, Zander C, Heidbreder M, Kasperek Y, Noll T, Seitz O, Saldamli B, Sudhoff H, Sader R, Kaltschmidt C, Kaltschmidt B., Stem Cells 27(8), 2009
PMID: 19544446
Bioconductor: open software development for computational biology and bioinformatics.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J., Genome Biol. 5(10), 2004
PMID: 15461798
Preprocessing of oligonucleotide array data.
Wu Z, Irizarry RA., Nat. Biotechnol. 22(6), 2004
PMID: 15175677
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini, J R Stat Soc Ser B 57(), 1995
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.
Huang da W, Sherman BT, Lempicki RA., Nat Protoc 4(1), 2009
PMID: 19131956
Adjusting batch effects in microarray expression data using empirical Bayes methods.
Johnson WE, Li C, Rabinovic A., Biostatistics 8(1), 2006
PMID: 16632515
A single-sample microarray normalization method to facilitate personalized-medicine workflows.
Piccolo SR, Sun Y, Campbell JD, Lenburg ME, Bild AH, Johnson WE., Genomics 100(6), 2012
PMID: 22959562
The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development.
Kurtz A, Zimmer A, Schnutgen F, Bruning G, Spener F, Muller T., Development 120(9), 1994
PMID: 7956838
Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C.
Garcion E, Halilagic A, Faissner A, ffrench-Constant C., Development 131(14), 2004
PMID: 15226258
A gene regulatory network orchestrates neural crest formation.
Sauka-Spengler T, Bronner-Fraser M., Nat. Rev. Mol. Cell Biol. 9(7), 2008
PMID: 18523435
Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis.
Pinto L, Mader MT, Irmler M, Gentilini M, Santoni F, Drechsel D, Blum R, Stahl R, Bulfone A, Malatesta P, Beckers J, Gotz M., Mol. Cell. Neurosci. 38(1), 2008
PMID: 18372191
A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity.
Li P, Du F, Yuelling LW, Lin T, Muradimova RE, Tricarico R, Wang J, Enikolopov G, Bellacosa A, Wechsler-Reya RJ, Yang ZJ., Nat. Neurosci. 16(12), 2013
PMID: 24141309
Structurally distinct LewisX glycans distinguish subpopulations of neural stem/progenitor cells.
Hennen E, Czopka T, Faissner A., J. Biol. Chem. 286(18), 2011
PMID: 21385876
Differential expression of micro-heterogeneous LewisX-type glycans in the stem cell compartment of the developing mouse spinal cord.
Karus M, Hennen E, Safina D, Klausmeyer A, Wiese S, Faissner A., Neurochem. Res. 38(6), 2013
PMID: 23624942
Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties.
Faissner A, Clement A, Lochter A, Streit A, Mandl C, Schachner M., J. Cell Biol. 126(3), 1994
PMID: 7519189
Structure and expression of differentiation antigens on functional subclasses of primary sensory neurons.
Jessell TM, Dodd J., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 308(1136), 1985
PMID: 2580322
Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells.
Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE, Kondoh H., Nature 470(7334), 2011
PMID: 21331042
Adult craniofacial stem cells: sources and relation to the neural crest.
Kaltschmidt B, Kaltschmidt C, Widera D., Stem Cell Rev 8(3), 2012
PMID: 22170630
Epidermal neural crest stem cells (EPI-NCSC) and pluripotency.
Sieber-Blum M, Hu Y., Stem Cell Rev 4(4), 2008
PMID: 18712509
Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate.
Hauser S, Widera D, Qunneis F, Muller J, Zander C, Greiner J, Strauss C, Luningschror P, Heimann P, Schwarze H, Ebmeyer J, Sudhoff H, Arauzo-Bravo MJ, Greber B, Zaehres H, Scholer H, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 21(5), 2012
PMID: 22128806
Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10.
Sonnenberg-Riethmacher E, Miehe M, Stolt CC, Goerich DE, Wegner M, Riethmacher D., Mech. Dev. 109(2), 2001
PMID: 11731238
The role of the transcription factor Rbpj in the development of dorsal root ganglia.
Hu ZL, Shi M, Huang Y, Zheng MH, Pei Z, Chen JY, Han H, Ding YQ., Neural Dev 6(), 2011
PMID: 21510873
Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes.
Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellstrom M, Lindahl P, Betsholtz C., FASEB J. 20(10), 2006
PMID: 16807374
The mouse Dlx-2 (Tes-1) gene is expressed in spatially restricted domains of the forebrain, face and limbs in midgestation mouse embryos.
Bulfone A, Kim HJ, Puelles L, Porteus MH, Grippo JF, Rubenstein JL., Mech. Dev. 40(3), 1993
PMID: 8098616
Sox genes regulate type 2 collagen expression in avian neural crest cells.
Suzuki T, Sakai D, Osumi N, Wada H, Wakamatsu Y., Dev. Growth Differ. 48(8), 2006
PMID: 17026712
A comparison of the expression pattern of five genes of the family of small leucine-rich proteoglycans during mouse development.
Wilda M, Bachner D, Just W, Geerkens C, Kraus P, Vogel W, Hameister H., J. Bone Miner. Res. 15(11), 2000
PMID: 11092399
Developmental changes and regional localization of Dspp, Mepe, Mimecan and Versican in postnatal developing mouse teeth.
Hou C, Liu ZX, Tang KL, Wang MG, Sun J, Wang J, Li S., J. Mol. Histol. 43(1), 2011
PMID: 22042093
Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation.
Ortega N, Behonick DJ, Colnot C, Cooper DN, Werb Z., Mol. Biol. Cell 16(6), 2005
PMID: 15800063
Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein.
Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G., Nature 386(6620), 1997
PMID: 9052783
Msx2 is a repressor of chondrogenic differentiation in migratory cranial neural crest cells.
Takahashi K, Nuckolls GH, Takahashi I, Nonaka K, Nagata M, Ikura T, Slavkin HC, Shum L., Dev. Dyn. 222(2), 2001
PMID: 11668602
Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2.
Semba I, Nonaka K, Takahashi I, Takahashi K, Dashner R, Shum L, Nuckolls GH, Slavkin HC., Dev. Dyn. 217(4), 2000
PMID: 10767084
Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells.
Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ., Development 131(22), 2004
PMID: 15496445
Trunk neural crest has skeletogenic potential.
McGonnell IM, Graham A., Curr. Biol. 12(9), 2002
PMID: 12007423
Contribution of neural crest-derived cells in the embryonic and adult thymus.
Foster K, Sheridan J, Veiga-Fernandes H, Roderick K, Pachnis V, Adams R, Blackburn C, Kioussis D, Coles M., J. Immunol. 180(5), 2008
PMID: 18292542
Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain.
Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R., Nature 341(6241), 1989
PMID: 2571936
SoxE function in vertebrate nervous system development.
Stolt CC, Wegner M., Int. J. Biochem. Cell Biol. 42(3), 2009
PMID: 19647093
BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells.
Sailer MH, Hazel TG, Panchision DM, Hoeppner DJ, Schwab ME, McKay RD., J. Cell. Sci. 118(Pt 24), 2005
PMID: 16339968
Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo.
Rogers CD, Archer TC, Cunningham DD, Grammer TC, Casey EM., Dev. Biol. 313(1), 2007
PMID: 18031719
Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes.
Hoffmann SA, Hos D, Kuspert M, Lang RA, Lovell-Badge R, Wegner M, Reiprich S., Development 141(1), 2013
PMID: 24257626
Oligodendrocyte maturation is inhibited by bone morphogenetic protein.
See J, Zhang X, Eraydin N, Mun SB, Mamontov P, Golden JA, Grinspan JB., Mol. Cell. Neurosci. 26(4), 2004
PMID: 15276151
The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain.
Etchevers HC, Vincent C, Le Douarin NM, Couly GF., Development 128(7), 2001
PMID: 11245571
Neuroectodermal origin of brain pericytes and vascular smooth muscle cells.
Korn J, Christ B, Kurz H., J. Comp. Neurol. 442(1), 2002
PMID: 11754368
Neural crest origin of retinal and choroidal pericytes.
Trost A, Schroedl F, Lange S, Rivera FJ, Tempfer H, Korntner S, Stolt CC, Wegner M, Bogner B, Kaser-Eichberger A, Krefft K, Runge C, Aigner L, Reitsamer HA., Invest. Ophthalmol. Vis. Sci. 54(13), 2013
PMID: 24235018
Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes.
Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L., J. Biol. Chem. 289(4), 2013
PMID: 24307174
Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage.
Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD., Nat. Neurosci. 9(2), 2005
PMID: 16388308
The lineage contribution and role of Gbx2 in spinal cord development.
Luu B, Ellisor D, Zervas M., PLoS ONE 6(6), 2011
PMID: 21698205
Oct-4: a germline-specific transcription factor mapping to the mouse t-complex.
Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P., EMBO J. 9(7), 1990
PMID: 2357966
Expression of a large family of POU-domain regulatory genes in mammalian brain development.
He X, Treacy MN, Simmons DM, Ingraham HA, Swanson LW, Rosenfeld MG., Nature 340(6228), 1989
PMID: 2739723
Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells.
Tanaka S, Kamachi Y, Tanouchi A, Hamada H, Jing N, Kondoh H., Mol. Cell. Biol. 24(20), 2004
PMID: 15456859
Human neural crest cells display molecular and phenotypic hallmarks of stem cells.
Thomas S, Thomas M, Wincker P, Babarit C, Xu P, Speer MC, Munnich A, Lyonnet S, Vekemans M, Etchevers HC., Hum. Mol. Genet. 17(21), 2008
PMID: 18689800
A stable cranial neural crest cell line from mouse.
Ishii M, Arias AC, Liu L, Chen YB, Bronner ME, Maxson RE., Stem Cells Dev. 21(17), 2012
PMID: 22889333
Establishment and controlled differentiation of neural crest stem cell lines using conditional transgenesis.
Maurer J, Fuchs S, Jager R, Kurz B, Sommer L, Schorle H., Differentiation 75(7), 2007
PMID: 17381545
Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons.
Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H., Neuron 24(4), 1999
PMID: 10624949
A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.
Hunt DP, Morris PN, Sterling J, Anderson JA, Joannides A, Jahoda C, Compston A, Chandran S., Stem Cells 26(1), 2007
PMID: 17901404
Isolation of multipotent adult stem cells from the dermis of mammalian skin.
Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD., Nat. Cell Biol. 3(9), 2001
PMID: 11533656
Schwann cells can be reprogrammed to multipotency by culture.
Widera D, Heimann P, Zander C, Imielski Y, Heidbreder M, Heilemann M, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 20(12), 2011
PMID: 21466279
Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons.
Narytnyk A, Verdon B, Loughney A, Sweeney M, Clewes O, Taggart MJ, Sieber-Blum M., Stem Cell Rev 10(2), 2014
PMID: 24399192
Efficient generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein.
Kubo A, Yoshida T, Kobayashi N, Yokoyama T, Mimura T, Nishiguchi T, Higashida T, Yamamoto I, Kanno H., Stem Cells Dev. 18(10), 2009
PMID: 19320554

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 25331182
PubMed | Europe PMC

Suchen in

Google Scholar