Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways

Kianianmomeni A, Hallmann A (2015)
Current Genetics 61(1): 3-18.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Photosynthetic organisms, e.g., plants including green algae, use a sophisticated light-sensing system, composed of primary photoreceptors and additional downstream signaling components, to monitor changes in the ambient light environment towards adjust their growth and development. Although a variety of cellular processes, e.g., initiation of cleavage division and final cellular differentiation, have been shown to be light-regulated in the green alga Volvox carteri, little is known about the underlying light perception and signaling pathways. This multicellular alga possesses at least 12 photoreceptors, i.e., one phototropin (VcPhot), four cryptochromes (VcCRYa, VcCRYp, VcCRYd1, and VcCRYd2), and seven members of rhodopsin-like photoreceptors (VR1, VChR1, VChR2, VcHKR1, VcHKR2, VcHKR3, and VcHKR4), which display distinct light-dependent chemical processes based on their protein architectures and associated chromophores. Gene expression analyses could show that the transcript levels of some of the photoreceptor genes (e.g., VChR1 and VcHKR1) accumulate during division cleavages, while others (e.g., VcCRYa, VcCRYp, and VcPhot) accumulate during final cellular differentiation. However, the pattern of transcript accumulation changes when the alga switches to the sexual development. Eight photoreceptor genes, e.g., VcPhot, VcCRYp, and VcHKR1, are highly expressed in the somatic cells, while only the animal-type rhodopsin VR1 was found to be highly expressed in the reproductive cells/embryos during both asexual and sexual life cycles. Moreover, accumulation of VChR1 and VcCRYa transcripts is more sensitive to light and changes in response to more than one light quality. Obviously, different regulatory mechanisms underlying gene expression control transcript accumulation of photoreceptors not only during development, but also in a cell-type specific way and in response to various external signals such as light quality. The transcriptional patterns described in this study show that Volvox photoreceptors are mostly expressed in a cell-type specific manner. This gives reason to believe that cell-type specific light-signaling pathways allow differential regulation of cellular and developmental processes in response to the environmental light cues.
Erscheinungsjahr
2015
Zeitschriftentitel
Current Genetics
Band
61
Ausgabe
1
Seite(n)
3-18
ISSN
0172-8083
Page URI
https://pub.uni-bielefeld.de/record/2713729

Zitieren

Kianianmomeni A, Hallmann A. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways. Current Genetics. 2015;61(1):3-18.
Kianianmomeni, A., & Hallmann, A. (2015). Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways. Current Genetics, 61(1), 3-18. doi:10.1007/s00294-014-0440-3
Kianianmomeni, Arash, and Hallmann, Armin. 2015. “Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways”. Current Genetics 61 (1): 3-18.
Kianianmomeni, A., and Hallmann, A. (2015). Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways. Current Genetics 61, 3-18.
Kianianmomeni, A., & Hallmann, A., 2015. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways. Current Genetics, 61(1), p 3-18.
A. Kianianmomeni and A. Hallmann, “Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways”, Current Genetics, vol. 61, 2015, pp. 3-18.
Kianianmomeni, A., Hallmann, A.: Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways. Current Genetics. 61, 3-18 (2015).
Kianianmomeni, Arash, and Hallmann, Armin. “Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways”. Current Genetics 61.1 (2015): 3-18.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Physical energies to the rescue of damaged tissues.
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C., World J Stem Cells 11(6), 2019
PMID: 31293714
Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases.
Tian Y, Gao S, von der Heyde EL, Hallmann A, Nagel G., BMC Biol 16(1), 2018
PMID: 30522480

68 References

Daten bereitgestellt von Europe PubMed Central.

Patterns of organellar and nuclear inheritance among progeny of two geographically isolated strains of Volvox carteri.
Adams CR, Stamer KA, Miller JK, McNally JG, Kirk MM, Kirk DL., Curr. Genet. 18(2), 1990
PMID: 1977526
A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
Beel B, Prager K, Spexard M, Sasso S, Weiss D, Muller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M., Plant Cell 24(7), 2012
PMID: 22773746
Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization.
Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P., Plant Cell 20(6), 2008
PMID: 18552201

M, Biologia 64(), 2009
The Phaeodactylum genome reveals the evolutionary history of diatom genomes.
Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV., Nature 456(7219), 2008
PMID: 18923393
Identification of a new cryptochrome class. Structure, function, and evolution.
Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer JA, Getzoff ED., Mol. Cell 11(1), 2003
PMID: 12535521
Cryptochromes: blue light receptors for plants and animals.
Cashmore AR, Jarillo JA, Wu YJ, Liu D., Science 284(5415), 1999
PMID: 10221900
Whole-genome analysis of two-component signal transduction genes in fungal pathogens.
Catlett NL, Yoder OC, Turgeon BG., Eukaryotic Cell 2(6), 2003
PMID: 14665450
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969

A, Proc Natl Acad Sci 103(), 2006
Chlamyrhodopsin represents a new type of sensory photoreceptor.
Deininger W, Kroger P, Hegemann U, Lottspeich F, Hegemann P., EMBO J. 14(23), 1995
PMID: 8846778
Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri.
Ebnet E, Fischer M, Deininger W, Hegemann P., Plant Cell 11(8), 1999
PMID: 10449581
Pfam: clans, web tools and services.
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A., Nucleic Acids Res. 34(Database issue), 2006
PMID: 16381856
The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses.
Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P., J. Cell. Sci. 114(Pt 21), 2001
PMID: 11719552
Chlamydomonas reinhardtii in the landscape of pigments.
Grossman AR, Lohr M, Im CS., Annu. Rev. Genet. 38(), 2004
PMID: 15568974
Nomenclature for members of the two-component signaling pathway of plants.
Heyl A, Brault M, Frugier F, Kuderova A, Lindner AC, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE., Plant Physiol. 161(3), 2013
PMID: 23324541

HJ, Protoplasma 199(), 1997

KY, Proc Natl Acad Sci 100(), 2003
Light-regulated plant growth and development.
Kami C, Lorrain S, Hornitschek P, Fankhauser C., Curr. Top. Dev. Biol. 91(), 2010
PMID: 20705178
"Vision" in single-celled algae.
Kateriya S, Nagel G, Bamberg E, Hegemann P., News Physiol. Sci. 19(), 2004
PMID: 15143209
Algal photoreceptors: in vivo functions and potential applications.
Kianianmomeni A, Hallmann A., Planta 239(1), 2013
PMID: 24081482

D, 1998

DL, BioEssays News Rev Mol Cell Dev Biol 27(), 2005
Heat shock elicits production of sexual inducer in Volvox.
Kirk DL, Kirk MM., Science 231(4733), 1986
PMID: 3941891
regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein.
Kirk MM, Stark K, Miller SM, Muller W, Taillon BE, Gruber H, Schmitt R, Kirk DL., Development 126(4), 1999
PMID: 9895312

G, 1981
Cyclic AMP is one of the intracellular signals during the mating of Chlamydomonas eugametos.
Kooijman R, de Wildt P, van den Briel W, Tan SH, Musgrav A, van den Ende H., Planta 181(4), 1990
PMID: 24196933
mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop.
Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM., Cell 98(2), 1999
PMID: 10428031
Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues.
Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G., Plant Cell Environ. 35(5), 2011
PMID: 22082487
Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis.
Lopez-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, Murray JA, Beemster GT, Bogre L, Shanahan H., Plant Cell 20(4), 2008
PMID: 18424613
A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light.
Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Tran Nguyen TM, Kateriya S, Kennis JT, Hildebrandt P, Hegemann P., J. Biol. Chem. 287(47), 2012
PMID: 23027869
Organ-specific expression of Arabidopsis genome during development.
Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng XW., Plant Physiol. 138(1), 2005
PMID: 15888681
Resourceful heterotrophs make the most of light in the coastal ocean.
Moran MA, Miller WL., Nat. Rev. Microbiol. 5(10), 2007
PMID: 17828280
Channelrhodopsin-1: a light-gated proton channel in green algae.
Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P., Science 296(5577), 2002
PMID: 12089443

G, Proc Natl Acad Sci 100(), 2003

AM, Proc R Soc B 270(Suppl. 2), 2003

G, BMC Genom 7(), 2006

AUTHOR UNKNOWN, 0
Biochemical and structural studies of the large Ycf4-photosystem I assembly complex of the green alga Chlamydomonas reinhardtii.
Ozawa S, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix JD, Takahashi Y., Plant Cell 21(8), 2009
PMID: 19700633
Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii.
Pasquale SM, Goodenough UW., J. Cell Biol. 105(5), 1987
PMID: 2824527
Sporulation of Bacillus subtilis.
Piggot PJ, Hilbert DW., Curr. Opin. Microbiol. 7(6), 2004
PMID: 15556029

R, Proc Natl Acad Sci 105(), 2008
Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri.
Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS., Science 329(5988), 2010
PMID: 20616280
Signal transduction in the sexual life of Chlamydomonas.
Quarmby LM., Plant Mol. Biol. 26(5), 1994
PMID: 7858190
Dissection of eukaryotic transmembrane signalling using Chlamydomonas.
Quarmby LM, Hartzell HC., Trends Pharmacol. Sci. 15(9), 1994
PMID: 7992388

M, J Plankton Res 26(), 2004

H, Plant Cell Physiol 20(), 1979
Two-component systems and their co-option for eukaryotic signal transduction.
Schaller GE, Shiu SH, Armitage JP., Curr. Biol. 21(9), 2011
PMID: 21549954

OA, Proc Natl Acad Sci 99(), 2002
Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
Somers DE, Devlin PF, Kay SA., Science 282(5393), 1998
PMID: 9822379

U, Limnol Oceanogr 31(), 1986
The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila.
Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC., Cell 95(5), 1998
PMID: 9845370

RC, Proc Natl Acad Sci 77(), 1980
Two-component signal transduction.
Stock AM, Robinson VL, Goudreau PN., Annu. Rev. Biochem. 69(), 2000
PMID: 10966457
Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization.
Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T., Biochem. Biophys. Res. Commun. 301(3), 2003
PMID: 12565839
Role for YakA, cAMP, and protein kinase A in regulation of stress responses of Dictyostelium discoideum cells.
Taminato A, Bagattini R, Gorjao R, Chen G, Kuspa A, Souza GM., Mol. Biol. Cell 13(7), 2002
PMID: 12134067
Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii.
Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G., Plant Cell 24(11), 2012
PMID: 23204408

L, Microbiol 150(), 2004
Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.
Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM., PLoS Biol. 6(1), 2008
PMID: 18184036
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25117716
PubMed | Europe PMC

Suchen in

Google Scholar