When circles become triangular: How transsaccadic predictions shape the perception of shape

Herwig A, Weiß K, Schneider WX (2015)
Annals of the New York Academy of Sciences 1339(1): 97-105.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2015
Zeitschriftentitel
Annals of the New York Academy of Sciences
Band
1339
Ausgabe
1
Seite(n)
97-105
ISSN
1749-6632
Page URI
https://pub.uni-bielefeld.de/record/2713261

Zitieren

Herwig A, Weiß K, Schneider WX. When circles become triangular: How transsaccadic predictions shape the perception of shape. Annals of the New York Academy of Sciences. 2015;1339(1):97-105.
Herwig, A., Weiß, K., & Schneider, W. X. (2015). When circles become triangular: How transsaccadic predictions shape the perception of shape. Annals of the New York Academy of Sciences, 1339(1), 97-105. doi:10.1111/nyas.12672
Herwig, A., Weiß, K., and Schneider, W. X. (2015). When circles become triangular: How transsaccadic predictions shape the perception of shape. Annals of the New York Academy of Sciences 1339, 97-105.
Herwig, A., Weiß, K., & Schneider, W.X., 2015. When circles become triangular: How transsaccadic predictions shape the perception of shape. Annals of the New York Academy of Sciences, 1339(1), p 97-105.
A. Herwig, K. Weiß, and W.X. Schneider, “When circles become triangular: How transsaccadic predictions shape the perception of shape”, Annals of the New York Academy of Sciences, vol. 1339, 2015, pp. 97-105.
Herwig, A., Weiß, K., Schneider, W.X.: When circles become triangular: How transsaccadic predictions shape the perception of shape. Annals of the New York Academy of Sciences. 1339, 97-105 (2015).
Herwig, Arvid, Weiß, Katharina, and Schneider, Werner X. “When circles become triangular: How transsaccadic predictions shape the perception of shape”. Annals of the New York Academy of Sciences 1339.1 (2015): 97-105.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transsaccadic integration is dominated by early, independent noise.
Stewart EEM, Schütz AC., J Vis 19(6), 2019
PMID: 31206139
Perceptual learning while preparing saccades.
Rolfs M, Murray-Smith N, Carrasco M., Vision Res 152(), 2018
PMID: 29277450
Object discrepancy modulates feature prediction across eye movements.
Köller CP, Poth CH, Herwig A., Psychol Res (), 2018
PMID: 29387939
Calibration of peripheral perception of shape with and without saccadic eye movements.
Paeye C, Collins T, Cavanagh P, Herwig A., Atten Percept Psychophys 80(3), 2018
PMID: 29327331
Neural Mechanisms of Selective Visual Attention.
Moore T, Zirnsak M., Annu Rev Psychol 68(), 2017
PMID: 28051934
Assessing Self-Awareness through Gaze Agency.
Gregori Grgič R, Crespi SA, de'Sperati C., PLoS One 11(11), 2016
PMID: 27812138
Near-optimal integration of orientation information across saccades.
Ganmor E, Landy MS, Simoncelli EP., J Vis 15(16), 2015
PMID: 26650193

45 References

Daten bereitgestellt von Europe PubMed Central.

Motion and vision: why animals move their eyes.
Land MF., J. Comp. Physiol. A 185(4), 1999
PMID: 10555268
Neuronal mechanisms for visual stability: progress and problems
Wurtz, Phil. Trans. R. Soc. B 366(), 2011

Helmholtz, 1909
Saccadic suppression: a review and an analysis.
Matin E., Psychol Bull 81(12), 1974
PMID: 4612577
Changes in visual perception at the time of saccades.
Ross J, Morrone MC, Goldberg ME, Burr DC., Trends Neurosci. 24(2), 2001
PMID: 11164942
Object recognition during foveating eye movements
Schütz, Vis. Res. 49(), 2009
Visual perception and saccadic eye movements.
Ibbotson M, Krekelberg B., Curr. Opin. Neurobiol. 21(4), 2011
PMID: 21646014
Saccade target selection and object recognition: evidence for a common attentional mechanism
Deubel, Vis. Res. 36(), 1996
Predictive remapping of attention across eye movements.
Rolfs M, Jonikaitis D, Deubel H, Cavanagh P., Nat. Neurosci. 14(2), 2010
PMID: 21186360
Visual space is compressed in prefrontal cortex before eye movements.
Zirnsak M, Steinmetz NA, Noudoost B, Xu KZ, Moore T., Nature 507(7493), 2014
PMID: 24670771
Visual stability based on remapping of attention pointers.
Cavanagh P, Hunt AR, Afraz A, Rolfs M., Trends Cogn. Sci. (Regul. Ed.) 14(4), 2010
PMID: 20189870
Evidence for a role of action in colour perception.
Bompas A, O'Regan JK., Perception 35(1), 2006
PMID: 16491709

Bar, 2011
The Theory of Event Coding (TEC): a framework for perception and action planning.
Hommel B, Musseler J, Aschersleben G, Prinz W., Behav Brain Sci 24(5), 2001
PMID: 12239891
Prediction, cognition and the brain
Bubic, Front. Hum. Neurosci. 22(), 2010
Associating peripheral and foveal visual input across saccades: a default mode of the human visual system?
Weiß, J. Vis. 14(11), 2014
An object-mediated updating account of insensitivity to transsaccadic change
Tas, J. Vis. 12(11), 2012
Transsaccadic identification of highly similar artificial shapes
Demeyer, J. Vis. 9(4), 2009
Using confidence intervals in within-subject designs.
Loftus GR, Masson ME., Psychon Bull Rev 1(4), 1994
PMID: 24203555
A sensorimotor account of vision and visual consciousness.
O'Regan JK, Noe A., Behav Brain Sci 24(5), 2001
PMID: 12239892

Herwig, 2013
VAM: a neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action
Schneider, Vis. Cogn. 2(), 1995
Perceptual resonance: action-induced modulation of perception.
Schutz-Bosbach S, Prinz W., Trends Cogn. Sci. (Regul. Ed.) 11(8), 2007
PMID: 17629544
Attentional selection in visual perception, memory and action: a quest for cross-domain integration
Schneider, Phil. Trans. R. Soc. B 368(), 2013
Attention, intention, and priority in the parietal lobe.
Bisley JW, Goldberg ME., Annu. Rev. Neurosci. 33(), 2010
PMID: 20192813
'Breaking' position-invariant object recognition.
Cox DD, Meier P, Oertelt N, DiCarlo JJ., Nat. Neurosci. 8(9), 2005
PMID: 16116453
Action-effect associations revealed by eye movements.
Herwig A, Horstmann G., Psychon Bull Rev 18(3), 2011
PMID: 21327975
Neural limits to representing objects still within view.
Tsubomi H, Fukuda K, Watanabe K, Vogel EK., J. Neurosci. 33(19), 2013
PMID: 23658165
The ventral visual pathway: an expanded neural framework for the processing of object quality.
Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M., Trends Cogn. Sci. (Regul. Ed.) 17(1), 2012
PMID: 23265839
Responses to contour features in macaque area V4.
Pasupathy A, Connor CE., J. Neurophysiol. 82(5), 1999
PMID: 10561421
Activity in visual area V4 correlates with surface perception
Bouvier, J. Vis. 8(7), 2008
Toward a unified theory of visual area V4.
Roe AW, Chelazzi L, Connor CE, Conway BR, Fujita I, Gallant JL, Lu H, Vanduffel W., Neuron 74(1), 2012
PMID: 22500626
Differential detection of global luminance and contrast changes across saccades and flickers during active scene perception
Henderson, Vis. Res. 48(), 2008
Selective visual processing across competition episodes: a theory of task-driven visual attention and working memory
Schneider, Phil. Trans. R. Soc. B 368(), 2013
Where to look next? Combining static and dynamic proto-objects in a TVA-based model of visual attention
Wischnewski, Cogn. Comput. 2(), 2010

Dennett, 1991

Deubel, 1999
Action effects in saccade control.
Huestegge L, Kreutzfeldt M., Psychon Bull Rev 19(2), 2012
PMID: 22246724
Action effect anticipation: neurophysiological basis and functional consequences.
Waszak F, Cardoso-Leite P, Hughes G., Neurosci Biobehav Rev 36(2), 2011
PMID: 22108008
Metamers of the ventral stream.
Freeman J, Simoncelli EP., Nat. Neurosci. 14(9), 2011
PMID: 21841776
Perceiving stimulus displacements across saccades
Irwin, Vis. Cogn. 22(), 2014

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25728607
PubMed | Europe PMC

Suchen in

Google Scholar