Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight

Ullrich TW, Kern R, Egelhaaf M (2015)
Biology Open 4(1): 13-21.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
Abstract / Bemerkung
Gaining information about the spatial layout of natural scenes is a challenging task that flies need to solve, especially when moving at high velocities. A group of motion sensitive cells in the lobula plate of flies is supposed to represent information about self-motion as well as the environment. Relevant environmental features might be the nearness of structures, influencing retinal velocity during translational self-motion, and the brightness contrast. We recorded the responses of the H1 cell, an individually identifiable lobula plate tangential cell, during stimulation with image sequences, simulating translational motion through natural sceneries with a variety of differing depth structures. A correlation was found between the average nearness of environmental structures within large parts of the cell's receptive field and its response across a variety of scenes, but no correlation was found between the brightness contrast of the stimuli and the cell response. As a consequence of motion adaptation resulting from repeated translation through the environment, the time-dependent response modulations induced by the spatial structure of the environment were increased relatively to the background activity of the cell. These results support the hypothesis that some lobula plate tangential cells do not only serve as sensors of self-motion, but also as a part of a neural system that processes information about the spatial layout of natural scenes.
Erscheinungsjahr
Zeitschriftentitel
Biology Open
Band
4
Ausgabe
1
Seite(n)
13-21
ISSN
PUB-ID

Zitieren

Ullrich TW, Kern R, Egelhaaf M. Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight. Biology Open. 2015;4(1):13-21.
Ullrich, T. W., Kern, R., & Egelhaaf, M. (2015). Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight. Biology Open, 4(1), 13-21. doi:10.1242/bio.20149449
Ullrich, T. W., Kern, R., and Egelhaaf, M. (2015). Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight. Biology Open 4, 13-21.
Ullrich, T.W., Kern, R., & Egelhaaf, M., 2015. Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight. Biology Open, 4(1), p 13-21.
T.W. Ullrich, R. Kern, and M. Egelhaaf, “Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight”, Biology Open, vol. 4, 2015, pp. 13-21.
Ullrich, T.W., Kern, R., Egelhaaf, M.: Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight. Biology Open. 4, 13-21 (2015).
Ullrich, Thomas W., Kern, Roland, and Egelhaaf, Martin. “Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motion-sensitive neuron during simulated flight”. Biology Open 4.1 (2015): 13-21.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-05-25T08:57:35Z

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The predator and prey behaviors of crabs: from ecology to neural adaptations.
Tomsic D, Sztarker J, Berón de Astrada M, Oliva D, Lanza E., J Exp Biol 220(pt 13), 2017
PMID: 28679790

66 References

Daten bereitgestellt von Europe PubMed Central.

Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordstrom K, O'Carroll DC., Curr. Biol. 20(11), 2010
PMID: 20537540
Spatial frequency, phase, and the contrast of natural images.
Bex PJ, Makous W., J Opt Soc Am A Opt Image Sci Vis 19(6), 2002
PMID: 12049346
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(12), 2005
PMID: 16133502
Seeing things in motion: models, circuits, and mechanisms.
Borst A, Euler T., Neuron 71(6), 2011
PMID: 21943597
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
The contrast sensitivity of fly movement-detecting neurons.
Dvorak D, Srinivasan MV, French AS., Vision Res. 20(5), 1980
PMID: 7414974
Functional properties of the H1-neurone in the third optic Ganglion of the Blowfly, Phaenicia.
Eckert H.., 1980
The neural computation of visual motion information.
Egelhaaf M.., 2006
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Movement detection in arthropods.
Egelhaaf M., Borst A.., 1993
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Visual perception and the statistical properties of natural scenes.
Geisler WS., Annu Rev Psychol 59(), 2008
PMID: 17705683
Dendritic integration of motion information in visual interneurons of the blowfly.
Haag J, Egelhaaf M, Borst A., Neurosci. Lett. 140(2), 1992
PMID: 1501773
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala.
Hausen K.., 1976
Monokulare und binokulare Bewegungsauswertung in der Lobula plate der Fliege.
Hausen K.., 1981
Motion sensitive interneurons in the optomotor system of the fly.
Hausen K.., 1982
The lobula-complex of the fly: structure, function and significance in visual behaviour.
Hausen K.., 1984
Neural mechanisms of visual course control in insects.
Hausen K., Egelhaaf M.., 1989
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
Heitwerth J, Kern R, van Hateren JH, Egelhaaf M., J. Neurophysiol. 94(3), 2005
PMID: 15917319

Hyvärinen A., Hurri J., Hoyer P.., 2009
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
[Optical characteristics of ommatidia in the complex eye of Musca].
Kirschfeld K, Franceschini N., Kybernetik 5(2), 1968
PMID: 5702780
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
Neuronal matched filters for optic flow processing in flying insects.
Krapp H.., 2000
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791
Head Movement of Flies during Visually Guided Flight.
Land M.., 1973
A visibility matching tone reproduction operator for high dynamic range scenes.
Larson G., Rushmeier H., Piatko C.., 1997
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
An iterative image registration technique with an application to stereo vision.
Lucas B., Kanade T.., 1981
Adaptation of the Motion-Sensitive Neuron H1 is Generated Locally and Governed by Contrast Frequency.
Maddess T., Laughlin S.., 1985
Rapid contrast gain reduction following motion adaptation.
Nordstrom K, Moyer de Miguel I, O'Carroll DC., J. Exp. Biol. 214(Pt 23), 2011
PMID: 22071192
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordstrom K., Front Neural Circuits 6(), 2012
PMID: 23087617
The challenges natural images pose for visual adaptation.
Rieke F, Rudd ME., Neuron 64(5), 2009
PMID: 20005818
Statistics of natural images: Scaling in the woods.
Ruderman DL, Bialek W., Phys. Rev. Lett. 73(6), 1994
PMID: 10057546
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Colour in the eyes of insects.
Stavenga DG., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(5), 2002
PMID: 12073079
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060
Temperature-dependence of neuronal performance in the motion pathway of the blowfly calliphora erythrocephala
Warzecha A, Horstmann W, Egelhaaf M., J. Exp. Biol. 202 Pt 22(), 1999
PMID: 10539965

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25505148
PubMed | Europe PMC

Suchen in

Google Scholar