The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction

Welsch R, Manthe U (2014)
The Journal of Chemical Physics 141(17): 174313.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H-H-CH3-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES. (C) 2014 AIP Publishing LLC.
Erscheinungsjahr
2014
Zeitschriftentitel
The Journal of Chemical Physics
Band
141
Ausgabe
17
Art.-Nr.
174313
ISSN
0021-9606
eISSN
1089-7690
Page URI
https://pub.uni-bielefeld.de/record/2710542

Zitieren

Welsch R, Manthe U. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction. The Journal of Chemical Physics. 2014;141(17): 174313.
Welsch, R., & Manthe, U. (2014). The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction. The Journal of Chemical Physics, 141(17), 174313. doi:10.1063/1.4900735
Welsch, Ralph, and Manthe, Uwe. 2014. “The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction”. The Journal of Chemical Physics 141 (17): 174313.
Welsch, R., and Manthe, U. (2014). The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction. The Journal of Chemical Physics 141:174313.
Welsch, R., & Manthe, U., 2014. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction. The Journal of Chemical Physics, 141(17): 174313.
R. Welsch and U. Manthe, “The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction”, The Journal of Chemical Physics, vol. 141, 2014, : 174313.
Welsch, R., Manthe, U.: The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction. The Journal of Chemical Physics. 141, : 174313 (2014).
Welsch, Ralph, and Manthe, Uwe. “The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 -> H-2 + CH3 reaction”. The Journal of Chemical Physics 141.17 (2014): 174313.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On regularizing the MCTDH equations of motion.
Meyer HD, Wang H., J Chem Phys 148(12), 2018
PMID: 29604814
Understanding mode-specific dynamics in the local mode representation.
Song H, Yang M., Phys Chem Chem Phys 20(29), 2018
PMID: 30014087
On regularizing the ML-MCTDH equations of motion.
Wang H, Meyer HD., J Chem Phys 149(4), 2018
PMID: 30068178
Natural reaction channels in H + CHD3 → H2 + CD3.
Ellerbrock R, Mantheuwe U., Faraday Discuss 212(0), 2018
PMID: 30226505
Recent advances in quantum scattering calculations on polyatomic bimolecular reactions.
Fu B, Shan X, Zhang DH, Clary DC., Chem Soc Rev 46(24), 2017
PMID: 29143835
Recent Advances in Quantum Dynamics of Bimolecular Reactions.
Zhang DH, Guo H., Annu Rev Phys Chem 67(), 2016
PMID: 26980305
Communication: Mode specific quantum dynamics of the F + CHD3 → HF + CD3 reaction.
Qi J, Song H, Yang M, Palma J, Manthe U, Guo H., J Chem Phys 144(17), 2016
PMID: 27155615

101 References

Daten bereitgestellt von Europe PubMed Central.

Experimental and theoretical differential cross sections for a four-atom reaction: HD + OH → H₂O + D.
Xiao C, Xu X, Liu S, Wang T, Dong W, Yang T, Sun Z, Dai D, Xu X, Zhang DH, Yang X., Science 333(6041), 2011
PMID: 21778397
State-specific correlation of coincident product pairs in the F + CD4 reaction.
Lin JJ, Zhou J, Shiu W, Liu K., Science 300(5621), 2003
PMID: 12738861
Reactive resonance in a polyatomic reaction.
Shiu W, Lin JJ, Liu K., Phys. Rev. Lett. 92(10), 2004
PMID: 15089205

AUTHOR UNKNOWN, 0
Mode- and bond-selective reaction of Cl(2P3/2) with CH3D: C-H stretch overtone excitation near 6000 cm(-1).
Holiday RJ, Kwon CH, Annesley CJ, Fleming Crim F., J Chem Phys 125(13), 2006
PMID: 17029427
Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom?
Yan S, Wu YT, Zhang B, Yue XF, Liu K., Science 316(5832), 2007
PMID: 17588925
Tracking the energy flow along the reaction path.
Yan S, Wu YT, Liu K., Proc. Natl. Acad. Sci. U.S.A. 105(35), 2008
PMID: 18664573
An ab initio potential surface describing abstraction and exchange for H+CH4.
Zhang X, Braams BJ, Bowman JM., J Chem Phys 124(2), 2006
PMID: 16422563
Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F+CH4-->HF+CH3 reaction.
Czako G, Shepler BC, Braams BJ, Bowman JM., J Chem Phys 130(8), 2009
PMID: 19256605
Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
Dynamics of the O(3P) + CHD3(vCH = 0,1) reactions on an accurate ab initio potential energy surface.
Czako G, Bowman JM., Proc. Natl. Acad. Sci. U.S.A. 109(21), 2012
PMID: 22566657
CH stretching excitation steers the F atom to the CD bond in the F + CHD3 reaction.
Czako G, Bowman JM., J. Am. Chem. Soc. 131(48), 2009
PMID: 19908862
Communication: probing the entrance channels of the X+CH4→HX+CH3 (X = F, Cl, Br, I) reactions via photodetachment of X(-)-CH4.
Cheng M, Feng Y, Du Y, Zhu Q, Zheng W, Czako G, Bowman JM., J Chem Phys 134(19), 2011
PMID: 21599037
Rotational mode specificity in the Cl + CHD3 → HCl + CD3 reaction.
Liu R, Wang F, Jiang B, Czako G, Yang M, Liu K, Guo H., J Chem Phys 141(7), 2014
PMID: 25149789
Seven-dimensional quantum dynamics study of the O(3P)+CH4 reaction.
Yang M, Lee SY, Zhang DH., J Chem Phys 126(6), 2007
PMID: 17313211
A transition state wave packet study of the H+CH4 reaction.
Zhang L, Lu Y, Lee SY, Zhang DH., J Chem Phys 127(23), 2007
PMID: 18154388
Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction.
Zhang W, Zhou Y, Wu G, Lu Y, Pan H, Fu B, Shuai Q, Liu L, Liu S, Zhang L, Jiang B, Dai D, Lee SY, Xie Z, Xie Z, Braams BJ, Bowman JM, Collins MA, Zhang DH, Yang X., Proc. Natl. Acad. Sci. U.S.A. 107(29), 2010
PMID: 20615988
Effects of reactant rotation on the dynamics of the OH + CH4 → H2O + CH3 reaction: a six-dimensional study.
Song H, Li J, Jiang B, Yang M, Lu Y, Guo H., J Chem Phys 140(8), 2014
PMID: 24588169
Accuracy of the centrifugal sudden approximation in the H + CHD₃ → H₂ + CD₃ reaction.
Zhang Z, Chen J, Liu S, Zhang DH., J Chem Phys 140(22), 2014
PMID: 24929385

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
First-principles theory for the H + CH4 --> H2 + CH3 reaction.
Wu T, Werner HJ, Manthe U., Science 306(5705), 2004
PMID: 15618512

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
State-to-state reaction probabilities within the quantum transition state framework.
Welsch R, Huarte-Larranaga F, Manthe U., J Chem Phys 136(6), 2012
PMID: 22360179

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Towards accurate ab initio predictions of the vibrational spectrum of methane.
Schwenke DW., Spectrochim Acta A Mol Biomol Spectrosc 58(4), 2002
PMID: 11991499
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25381520
PubMed | Europe PMC

Suchen in

Google Scholar