Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage

Ahluwalia BS, McCourt P, Oteiza A, Wilkinson JS, Huser T, Helleso OG (2015)
Analyst 140(1): 223-229.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ahluwalia, Balpreet Singh; McCourt, Peter; Oteiza, Ana; Wilkinson, James S.; Huser, ThomasUniBi ; Helleso, Olav Gaute
Abstract / Bemerkung
Red blood cells squeeze through micro-capillaries as part of blood circulation in the body. The deformability of red blood cells is thus critical for blood circulation. In this work, we report a method to optically squeeze red blood cells using the evanescent field present on top of a planar waveguide chip. The optical forces from a narrow waveguide are used to squeeze red blood cells to a size comparable to the waveguide width. Optical forces and pressure distributions on the cells are numerically computed to explain the squeezing process. The proposed technique is used to quantify the loss of blood deformability that occurs during blood storage lesion. Squeezing red blood cells using waveguides is a sensitive technique and works simultaneously on several cells, making the method suitable for monitoring stored blood.
Erscheinungsjahr
2015
Zeitschriftentitel
Analyst
Band
140
Ausgabe
1
Seite(n)
223-229
ISSN
0003-2654
Page URI
https://pub.uni-bielefeld.de/record/2710329

Zitieren

Ahluwalia BS, McCourt P, Oteiza A, Wilkinson JS, Huser T, Helleso OG. Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst. 2015;140(1):223-229.
Ahluwalia, B. S., McCourt, P., Oteiza, A., Wilkinson, J. S., Huser, T., & Helleso, O. G. (2015). Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst, 140(1), 223-229. doi:10.1039/c4an01181c
Ahluwalia, Balpreet Singh, McCourt, Peter, Oteiza, Ana, Wilkinson, James S., Huser, Thomas, and Helleso, Olav Gaute. 2015. “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage”. Analyst 140 (1): 223-229.
Ahluwalia, B. S., McCourt, P., Oteiza, A., Wilkinson, J. S., Huser, T., and Helleso, O. G. (2015). Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst 140, 223-229.
Ahluwalia, B.S., et al., 2015. Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst, 140(1), p 223-229.
B.S. Ahluwalia, et al., “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage”, Analyst, vol. 140, 2015, pp. 223-229.
Ahluwalia, B.S., McCourt, P., Oteiza, A., Wilkinson, J.S., Huser, T., Helleso, O.G.: Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst. 140, 223-229 (2015).
Ahluwalia, Balpreet Singh, McCourt, Peter, Oteiza, Ana, Wilkinson, James S., Huser, Thomas, and Helleso, Olav Gaute. “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage”. Analyst 140.1 (2015): 223-229.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Nanophotonic trapping: precise manipulation and measurement of biomolecular arrays.
Baker JE, Badman RP, Wang MD., Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(1), 2018
PMID: 28439980
Quantitative phase microscopy of red blood cells during planar trapping and propulsion.
Ahmad A, Dubey V, Singh VR, Tinguely JC, Øie CI, Wolfson DL, Mehta DS, So PTC, Ahluwalia BS., Lab Chip 18(19), 2018
PMID: 30132501

38 References

Daten bereitgestellt von Europe PubMed Central.

The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro.
Deplaine G, Safeukui I, Jeddi F, Lacoste F, Brousse V, Perrot S, Biligui S, Guillotte M, Guitton C, Dokmak S, Aussilhou B, Sauvanet A, Cazals Hatem D, Paye F, Thellier M, Mazier D, Milon G, Mohandas N, Mercereau-Puijalon O, David PH, Buffet PA., Blood 117(8), 2010
PMID: 21163923
Red blood cell aggregation and deformability among patients qualified for bariatric surgery.
Wiewiora M, Sosada K, Wylezol M, Slowinska L, Zurawinski W., Obes Surg 17(3), 2007
PMID: 17546846
Mechanical properties of stored red blood cells using optical tweezers.
Huruta RR, Barjas-Castro ML, Saad ST, Costa FF, Fontes A, Barbosa LC, Cesar CL., Blood 92(8), 1998
PMID: 9763588
Influence of storage on red blood cell rheological properties.
Berezina TL, Zaets SB, Morgan C, Spillert CR, Kamiyama M, Spolarics Z, Deitch EA, Machiedo GW., J. Surg. Res. 102(1), 2002
PMID: 11792145

Lelubre, Acta Clin. Belg. 65(), 2010
Duration of red-cell storage and complications after cardiac surgery.
Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, Blackstone EH., N. Engl. J. Med. 358(12), 2008
PMID: 18354101
Duration of red blood cell storage and survival of transfused patients (CME).
Edgren G, Kamper-Jorgensen M, Eloranta S, Rostgaard K, Custer B, Ullum H, Murphy EL, Busch MP, Reilly M, Melbye M, Hjalgrim H, Nyren O., Transfusion 50(6), 2010
PMID: 20158690
Measurement of human red blood cell deformability using a single micropore on a thin Si3N4 film.
Ogura E, Abatti PJ, Moriizumi T., IEEE Trans Biomed Eng 38(8), 1991
PMID: 1937504
Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries.
McWhirter JL, Noguchi H, Gompper G., Proc. Natl. Acad. Sci. U.S.A. 106(15), 2009
PMID: 19369212
Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.
Quinn DJ, Pivkin I, Wong SY, Chiam KH, Dao M, Karniadakis GE, Suresh S., Ann Biomed Eng 39(3), 2010
PMID: 21240637
Dynamics of Interaction of RBC with optical tweezers.
Mohanty S, Mohanty K, Gupta P., Opt Express 13(12), 2005
PMID: 19495392
Analysis of the behaviour of erythrocytes in an optical trapping system.
Grover S, Gauthier R, Skirtach A., Opt Express 7(13), 2000
PMID: 19407904

Dao, J. Mech. Phys. Solids 51(), 2003
Optical tweezers for single cells.
Zhang H, Liu KK., J R Soc Interface 5(24), 2008
PMID: 18381254
The optical stretcher: a novel laser tool to micromanipulate cells.
Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Kas J., Biophys. J. 81(2), 2001
PMID: 11463624
Biophotonic techniques for the study of malaria-infected red blood cells.
Mauritz JM, Esposito A, Tiffert T, Skepper JN, Warley A, Yoon YZ, Cicuta P, Lew VL, Guck JR, Kaminski CF., Med Biol Eng Comput 48(10), 2010
PMID: 20661776
Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
Bellini N, Vishnubhatla KC, Bragheri F, Ferrara L, Minzioni P, Ramponi R, Cristiani I, Osellame R., Opt Express 18(5), 2010
PMID: 20389480
Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber.
Unterkofler S, Garbos MK, Euser TG, St J Russell P., J Biophotonics 6(9), 2012
PMID: 23281270
Optical manipulation of microparticles and cells on silicon nitride waveguides.
Gaugiran S, Getin S, Fedeli J, Colas G, Fuchs A, Chatelain F, Derouard J., Opt Express 13(18), 2005
PMID: 19498716
Optical trapping and propulsion of red blood cells on waveguide surfaces.
Ahluwalia BS, McCourt P, Huser T, Helleso OG., Opt Express 18(20), 2010
PMID: 20941001
Surface transport and stable trapping of particles and cells by an optical waveguide loop.
Helleso OG, Lovhaugen P, Subramanian AZ, Wilkinson JS, Ahluwalia BS., Lab Chip 12(18), 2012
PMID: 22814473

Brevik, Phys. Rep. 52(), 1979

Brevik, J. Opt. Soc. Am. B 16(), 1999
Viscoelastic and biochemical properties of erythrocytes during storage with SAG-M at +4 degrees C.
Farges E, Grebe R, Baumann M., Clin. Hemorheol. Microcirc. 27(1), 2002
PMID: 12237485
Evolution of adverse changes in stored RBCs.
Bennett-Guerrero E, Veldman TH, Doctor A, Telen MJ, Ortel TL, Reid TS, Mulherin MA, Zhu H, Buck RD, Califf RM, McMahon TJ., Proc. Natl. Acad. Sci. U.S.A. 104(43), 2007
PMID: 17940021

Fontes, J. Opt. 13(), 2011

Cluitmans, Blood Transfusion 10(), 2012
Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods.
Luten M, Roerdinkholder-Stoelwinder B, Schaap NP, de Grip WJ, Bos HJ, Bosman GJ., Transfusion 48(7), 2008
PMID: 18482180
Laser-assisted optical rotational cell analyzer measurements reveal early changes in human RBC deformability induced by photodynamic treatment.
Hardeman MR, Besselink GA, Ebbing I, de Korte D, Ince C, Verhoeven AJ., Transfusion 43(11), 2003
PMID: 14617311
Proteomic analysis of RBC membrane protein degradation during blood storage.
D'Amici GM, Rinalducci S, Zolla L., J. Proteome Res. 6(8), 2007
PMID: 17585793
Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum.
Park Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, Suresh S., Proc. Natl. Acad. Sci. U.S.A. 105(37), 2008
PMID: 18772382
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25408950
PubMed | Europe PMC

Suchen in

Google Scholar