Engineering *Escherichia coli* for methanol conversion

Müller JEN, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax W, Wendisch VF, Brautaset T, Portais J-C, Vorholt J (2015)
Metabolic Engineering 28: 190-201.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Müller, Jonas E. N.; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stephanie; Quax, Wim; Wendisch, Volker F.UniBi ; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia
Erscheinungsjahr
2015
Zeitschriftentitel
Metabolic Engineering
Band
28
Seite(n)
190-201
ISSN
1096-7176
Page URI
https://pub.uni-bielefeld.de/record/2710199

Zitieren

Müller JEN, Meyer F, Litsanov B, et al. Engineering *Escherichia coli* for methanol conversion. Metabolic Engineering. 2015;28:190-201.
Müller, J. E. N., Meyer, F., Litsanov, B., Kiefer, P., Potthoff, E., Heux, S., Quax, W., et al. (2015). Engineering *Escherichia coli* for methanol conversion. Metabolic Engineering, 28, 190-201. doi:10.1016/j.ymben.2014.12.008
Müller, J. E. N., Meyer, F., Litsanov, B., Kiefer, P., Potthoff, E., Heux, S., Quax, W., Wendisch, V. F., Brautaset, T., Portais, J. - C., et al. (2015). Engineering *Escherichia coli* for methanol conversion. Metabolic Engineering 28, 190-201.
Müller, J.E.N., et al., 2015. Engineering *Escherichia coli* for methanol conversion. Metabolic Engineering, 28, p 190-201.
J.E.N. Müller, et al., “Engineering *Escherichia coli* for methanol conversion”, Metabolic Engineering, vol. 28, 2015, pp. 190-201.
Müller, J.E.N., Meyer, F., Litsanov, B., Kiefer, P., Potthoff, E., Heux, S., Quax, W., Wendisch, V.F., Brautaset, T., Portais, J.-C., Vorholt, J.: Engineering *Escherichia coli* for methanol conversion. Metabolic Engineering. 28, 190-201 (2015).
Müller, Jonas E. N., Meyer, Fabian, Litsanov, Boris, Kiefer, Patrick, Potthoff, Eva, Heux, Stephanie, Quax, Wim, Wendisch, Volker F., Brautaset, Trygve, Portais, Jean-Charles, and Vorholt, Julia. “Engineering *Escherichia coli* for methanol conversion”. Metabolic Engineering 28 (2015): 190-201.

35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Phage-Assisted Evolution of Bacillus methanolicus Methanol Dehydrogenase 2.
Roth TB, Woolston BM, Stephanopoulos G, Liu DR., ACS Synth Biol 8(4), 2019
PMID: 30856338
C1 Compound Biosensors: Design, Functional Study, and Applications.
Lee JY, Sung BH, Oh SH, Kwon KK, Lee H, Kim H, Lee DH, Yeom SJ, Lee SG., Int J Mol Sci 20(9), 2019
PMID: 31067766
Development of a formaldehyde biosensor with application to synthetic methylotrophy.
Woolston BM, Roth T, Kohale I, Liu DR, Stephanopoulos G., Biotechnol Bioeng 115(1), 2018
PMID: 28921510
Biological conversion of methane to chemicals and fuels: technical challenges and issues.
Hwang IY, Nguyen AD, Nguyen TT, Nguyen LT, Lee OK, Lee EY., Appl Microbiol Biotechnol 102(7), 2018
PMID: 29492639
A semi-synthetic regulon enables rapid growth of yeast on xylose.
Endalur Gopinarayanan V, Nair NU., Nat Commun 9(1), 2018
PMID: 29581426
Methanol-essential growth of Escherichia coli.
Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA., Nat Commun 9(1), 2018
PMID: 29666370
Synthetic biology advances and applications in the biotechnology industry: a perspective.
Katz L, Chen YY, Gonzalez R, Peterson TC, Zhao H, Baltz RH., J Ind Microbiol Biotechnol 45(7), 2018
PMID: 29915997
Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.
Woolston BM, King JR, Reiter M, Van Hove B, Stephanopoulos G., Nat Commun 9(1), 2018
PMID: 29921903
CO2 to succinic acid - Estimating the potential of biocatalytic routes.
Liebal UW, Blank LM, Ebert BE., Metab Eng Commun 7(), 2018
PMID: 30197864
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Current advance in bioconversion of methanol to chemicals.
Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M., Biotechnol Biofuels 11(), 2018
PMID: 30258494
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA, Papoutsakis ET., Metab Eng 39(), 2017
PMID: 27815193
Industrial biomanufacturing: The future of chemical production.
Clomburg JM, Crumbley AM, Gonzalez R., Science 355(6320), 2017
PMID: 28059717
Exploring eukaryotic formate metabolisms to enhance microbial growth and lipid accumulation.
Liu Z, Oyetunde T, Hollinshead WD, Hermanns A, Tang YJ, Liao W, Liu Y., Biotechnol Biofuels 10(), 2017
PMID: 28149324
Synthetic metabolism: metabolic engineering meets enzyme design.
Erb TJ, Jones PR, Bar-Even A., Curr Opin Chem Biol 37(), 2017
PMID: 28152442
6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28213736
Cell Factory Engineering.
Davy AM, Kildegaard HF, Andersen MR., Cell Syst 4(3), 2017
PMID: 28334575
Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae.
Dai Z, Gu H, Zhang S, Xin F, Zhang W, Dong W, Ma J, Jia H, Jiang M., Bioresour Technol 245(pt b), 2017
PMID: 28554521
Flux Balance Analysis Indicates that Methane Is the Lowest Cost Feedstock for Microbial Cell Factories.
Comer AD, Long MR, Reed JL, Pfleger BF., Metab Eng Commun 5(), 2017
PMID: 28989864
Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.
Wu TY, Chen CT, Liu JT, Bogorad IW, Damoiseaux R, Liao JC., Appl Microbiol Biotechnol 100(11), 2016
PMID: 26846745
Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy.
Volpers M, Claassens NJ, Noor E, van der Oost J, de Vos WM, Kengen SW, Martins Dos Santos VA., PLoS One 11(6), 2016
PMID: 27336167
Sugar Synthesis from CO2 in Escherichia coli.
Antonovsky N, Gleizer S, Noor E, Zohar Y, Herz E, Barenholz U, Zelcbuch L, Amram S, Wides A, Tepper N, Davidi D, Bar-On Y, Bareia T, Wernick DG, Shani I, Malitsky S, Jona G, Bar-Even A, Milo R., Cell 166(1), 2016
PMID: 27345370
Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.
Lawton TJ, Rosenzweig AC., J Am Chem Soc 138(30), 2016
PMID: 27366961
Harnessing the power of microbial autotrophy.
Claassens NJ, Sousa DZ, Dos Santos VA, de Vos WM, van der Oost J., Nat Rev Microbiol 14(11), 2016
PMID: 27665719
Scaffoldless engineered enzyme assembly for enhanced methanol utilization.
Price JV, Chen L, Whitaker WB, Papoutsakis E, Chen W., Proc Natl Acad Sci U S A 113(45), 2016
PMID: 27791059
Metabolic engineering in methanotrophic bacteria.
Kalyuzhnaya MG, Puri AW, Lidstrom ME., Metab Eng 29(), 2015
PMID: 25825038
Enzyme pathways: C1 metabolism redesigned.
Tai YS, Zhang K., Nat Chem Biol 11(6), 2015
PMID: 25978995
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26276544
Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol.
Sonntag F, Kroner C, Lubuta P, Peyraud R, Horst A, Buchhaupt M, Schrader J., Metab Eng 32(), 2015
PMID: 26369439

62 References

Daten bereitgestellt von Europe PubMed Central.


Anthony, 1982
The quinoprotein dehydrogenases for methanol and glucose.
Anthony C., Arch. Biochem. Biophys. 428(1), 2004
PMID: 15234264
The structure and mechanism of methanol dehydrogenase.
Anthony C, Williams P., Biochim. Biophys. Acta 1647(1-2), 2003
PMID: 12686102
3-Hexulose-6-phosphate synthase from thermotolerant methylotroph Bacillus C1.
Arfman N, Bystrykh L, Govorukhina NI, Dijkhuizen L., Meth. Enzymol. 188(), 1990
PMID: 2280711
Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus.
Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J., Eur. J. Biochem. 244(2), 1997
PMID: 9119008
Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp.
Arfman N, Van Beeumen J, De Vries GE, Harder W, Dijkhuizen L., J. Biol. Chem. 266(6), 1991
PMID: 1995643
Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme.
Arfman N, Watling EM, Clement W, van Oosterwijk RJ, de Vries GE, Harder W, Attwood MM, Dijkhuizen L., Arch. Microbiol. 152(3), 1989
PMID: 2673121
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Bacillus methanolicus: a candidate for industrial production of mino acids from methanol at 50 degrees C
Brautaset, Appl. Microbia. Biotechnol. 74(1), 2007
Modularity of methylotrophy, revisited.
Chistoserdova L., Environ. Microbiol. 13(10), 2011
PMID: 21443740
Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view.
Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME., J. Bacteriol. 185(10), 2003
PMID: 12730156
The expanding world of methylotrophic metabolism.
Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME., Annu. Rev. Microbiol. 63(), 2009
PMID: 19514844
Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy.
Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T, Tapia R, Gilna P, Lucas S, Richardson PM, Lidstrom ME., J. Bacteriol. 189(11), 2007
PMID: 17416667
Aerobic methylotrophic prokaryotes
Chistoserdova, 2013
Introduction of point mutations into cloned genes.
Cormack B, Castano I., Meth. Enzymol. 350(), 2002
PMID: 12073313
Thiols in formaldehyde dissimilation and detoxification.
Duine JA., Biofactors 10(2-3), 1999
PMID: 10609883
Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway.
Erb TJ, Berg IA, Brecht V, Muller M, Fuchs G, Alber BE., Proc. Natl. Acad. Sci. U.S.A. 104(25), 2007
PMID: 17548827
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information.
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO., Mol. Syst. Biol. 3(), 2007
PMID: 17593909
Molecular basis of formaldehyde detoxification. Characterization of two S-formylglutathione hydrolases from Escherichia coli, FrmB and YeiG.
Gonzalez CF, Proudfoot M, Brown G, Korniyenko Y, Mori H, Savchenko AV, Yakunin AF., J. Biol. Chem. 281(20), 2006
PMID: 16567800

Green, 2012
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424
Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph
Irla, J. Biotechnol. 188C(), 2014
The dissociation constants of tetrahydrofolic acid.
Kallen RG, Jencks WP., J. Biol. Chem. 241(24), 1966
PMID: 5954362
The mechanism of the condensation of formaldehyde with tetrahydrofolic acid.
Kallen RG, Jencks WP., J. Biol. Chem. 241(24), 1966
PMID: 5954363
The enzymatic conversion of N5-formyl tetrahydrofolic acid (folinic acid) to N10-formyl tetrahydrofolic acid.
KAY LD, OSBORN MJ, HATEFI Y, HUENNEKENS FM., J. Biol. Chem. 235(), 1960
PMID: 14404999
Nanoscale ion-pair reversed-phase HPLC-MS for sensitive metabolome analysis.
Kiefer P, Delmotte N, Vorholt JA., Anal. Chem. 83(3), 2010
PMID: 21166460
From fields to fuels: recent advances in the microbial production of biofuels.
Kung Y, Runguphan W, Keasling JD., ACS Synth Biol 1(11), 2012
PMID: 23656227
Methanol-bacterium process for Scp
Maclenna, Process Biochem. 8(), 1973
Complete genome sequences of six strains of the genus Methylobacterium.
Marx CJ, Bringel F, Chistoserdova L, Moulin L, Farhan Ul Haque M, Fleischman DE, Gruffaz C, Jourand P, Knief C, Lee MC, Muller EE, Nadalig T, Peyraud R, Roselli S, Russ L, Goodwin LA, Ivanova N, Kyrpides N, Lajus A, Land ML, Medigue C, Mikhailova N, Nolan M, Woyke T, Stolyar S, Vorholt JA, Vuilleumier S., J. Bacteriol. 194(17), 2012
PMID: 22887658
Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
Muller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA., Proteomics 14(6), 2014
PMID: 24452867
Response of the central metabolism of Escherichia coli to modified expression of the gene encoding the glucose-6-phosphate dehydrogenase.
Nicolas C, Kiefer P, Letisse F, Kromer J, Massou S, Soucaille P, Wittmann C, Lindley ND, Portais JC., FEBS Lett. 581(20), 2007
PMID: 17631881

AUTHOR UNKNOWN, 0
Towards oil independence through renewable methanol chemistry.
Olah GA., Angew. Chem. Int. Ed. Engl. 52(1), 2012
PMID: 23208664
Bifunctional enzyme fusion of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase.
Orita I, Sakamoto N, Kato N, Yurimoto H, Sakai Y., Appl. Microbiol. Biotechnol. 76(2), 2007
PMID: 17520247
The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway.
Orita I, Yurimoto H, Hirai R, Kawarabayasi Y, Sakai Y, Kato N., J. Bacteriol. 187(11), 2005
PMID: 15901685
Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics.
Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA., Proc. Natl. Acad. Sci. U.S.A. 106(12), 2009
PMID: 19261854
Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.
Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD., BMC Biotechnol. 8(), 2008
PMID: 18983675
OptFlux: an open-source software platform for in silico metabolic engineering.
Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M., BMC Syst Biol 4(), 2010
PMID: 20403172
Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA., Trends Biotechnol. 27(2), 2008
PMID: 19111927
Introduction of a synthetic CO₂-fixing photorespiratory bypass into a cyanobacterium.
Shih PM, Zarzycki J, Niyogi KK, Kerfeld CA., J. Biol. Chem. 289(14), 2014
PMID: 24558040
The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes
Silva-Rocha, Nucl. Acids Res. 41(), 2013
Single cell protein
Solomons, Crit. Rev. Biotechnol. 1(), 1983
Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.
Vorholt JA, Marx CJ, Lidstrom ME, Thauer RK., J. Bacteriol. 182(23), 2000
PMID: 11073907
Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources.
Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Medigue C, Lidstrom ME., PLoS ONE 4(5), 2009
PMID: 19440302
Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath).
Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methe B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA., PLoS Biol. 2(10), 2004
PMID: 15383840
Integrating biological redesign: where synthetic biology came from and where it needs to go.
Way JC, Collins JJ, Keasling JD, Silver PA., Cell 157(1), 2014
PMID: 24679533
Large-scale continuous production of single cell protein
Westlake, Chem. Ing. Tech. 58(), 1986
Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus.
Windass JD, Worsey MJ, Pioli EM, Pioli D, Barth PT, Atherton KT, Dart EC, Byrom D, Powell K, Senior PJ., Nature 287(5781), 1980
PMID: 6776410
Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster.
Yang XP, Zhong GF, Lin JP, Mao DB, Wei DZ., J. Ind. Microbiol. Biotechnol. 37(6), 2010
PMID: 20213113

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25596507
PubMed | Europe PMC

Suchen in

Google Scholar