Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth

Komati Reddy G, Lindner S, Wendisch VF (2015)
Applied and Environmental Microbiology 81(6): 1996-2005.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2015
Zeitschriftentitel
Applied and Environmental Microbiology
Band
81
Ausgabe
6
Seite(n)
1996-2005
ISSN
0099-2240
eISSN
1098-5336
Page URI
https://pub.uni-bielefeld.de/record/2710198

Zitieren

Komati Reddy G, Lindner S, Wendisch VF. Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth. Applied and Environmental Microbiology . 2015;81(6):1996-2005.
Komati Reddy, G., Lindner, S., & Wendisch, V. F. (2015). Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth. Applied and Environmental Microbiology , 81(6), 1996-2005. doi:10.1128/AEM.03116-14
Komati Reddy, Gajendar, Lindner, Steffen, and Wendisch, Volker F. 2015. “Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth”. Applied and Environmental Microbiology 81 (6): 1996-2005.
Komati Reddy, G., Lindner, S., and Wendisch, V. F. (2015). Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth. Applied and Environmental Microbiology 81, 1996-2005.
Komati Reddy, G., Lindner, S., & Wendisch, V.F., 2015. Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth. Applied and Environmental Microbiology , 81(6), p 1996-2005.
G. Komati Reddy, S. Lindner, and V.F. Wendisch, “Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth”, Applied and Environmental Microbiology , vol. 81, 2015, pp. 1996-2005.
Komati Reddy, G., Lindner, S., Wendisch, V.F.: Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth. Applied and Environmental Microbiology . 81, 1996-2005 (2015).
Komati Reddy, Gajendar, Lindner, Steffen, and Wendisch, Volker F. “Metabolic Engineering an ATP-neutral EMP pathway in Corynebacterium glutamicum: adaptive point mutation in NADH dehydrogenase restores growth”. Applied and Environmental Microbiology 81.6 (2015): 1996-2005.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Exploration of the Effect of Blue Light on Functional Metabolite Accumulation in Longan Embryonic Calli via RNA Sequencing.
Li H, Lyu Y, Chen X, Wang C, Yao D, Ni S, Lin Y, Chen Y, Zhang Z, Lai Z., Int J Mol Sci 20(2), 2019
PMID: 30669555
High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads.
Kranz A, Vogel A, Degner U, Kiefler I, Bott M, Usadel B, Polen T., J Biotechnol 258(), 2017
PMID: 28433722
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction.
Aslan S, Noor E, Bar-Even A., Biochem J 474(23), 2017
PMID: 29146872
NADPH-generating systems in bacteria and archaea.
Spaans SK, Weusthuis RA, van der Oost J, Kengen SW., Front Microbiol 6(), 2015
PMID: 26284036

68 References

Daten bereitgestellt von Europe PubMed Central.

Rethinking glycolysis: on the biochemical logic of metabolic pathways.
Bar-Even A, Flamholz A, Noor E, Milo R., Nat. Chem. Biol. 8(6), 2012
PMID: 22596202
Cooperation and competition in the evolution of ATP-producing pathways.
Pfeiffer T, Schuster S, Bonhoeffer S., Science 292(5516), 2001
PMID: 11283355
Glycolytic strategy as a tradeoff between energy yield and protein cost.
Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R., Proc. Natl. Acad. Sci. U.S.A. 110(24), 2013
PMID: 23630264
Metabolic and transcriptional response of Escherichia coli with a NADP(+)-dependent glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans.
Centeno-Leija S, Utrilla J, Flores N, Rodriguez A, Gosset G, Martinez A., Antonie Van Leeuwenhoek 104(6), 2013
PMID: 23989925
Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission.
Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H., J. Biosci. Bioeng. 103(3), 2007
PMID: 17434430
Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum.
Jensen JV, Wendisch VF., Microb. Cell Fact. 12(), 2013
PMID: 23806148
Metabolic engineering of Corynebacterium glutamicum for L-serine production.
Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L., Appl. Environ. Microbiol. 71(11), 2005
PMID: 16269752
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 24270893
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2012
PMID: 23199277
Metabolic engineering of Corynebacterium glutamicum for glycolate production.
Zahoor A, Otten A, Wendisch VF., J. Biotechnol. 192 Pt B(), 2014
PMID: 24486442
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum.
Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A., Appl. Microbiol. Biotechnol. 90(3), 2011
PMID: 21305281
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24668244
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Direct L-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface.
Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A., Appl. Microbiol. Biotechnol. 97(16), 2013
PMID: 23749228
-Lysine production
Kelle R, Hermann T, Bathe B., 2005
Phosphoenolpyruvate:sugar phosphotransferase systems and sugar metabolism in
Mori M, Shiio I., 1987
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase.
Reinscheid DJ, Schnicke S, Rittmann D, Zahnow U, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 145 ( Pt 2)(), 1999
PMID: 10075432
Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production.
Kabus A, Niebisch A, Bott M., Appl. Environ. Microbiol. 73(3), 2006
PMID: 17142369
The respiratory chain of Corynebacterium glutamicum.
Bott M, Niebisch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948635
Physiology and global gene expression of a Corynebacterium glutamicum ΔF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation.
Koch-Koerfges A, Kabus A, Ochrombel I, Marin K, Bott M., Biochim. Biophys. Acta 1817(2), 2011
PMID: 22050934
Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production.
Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M., Appl. Environ. Microbiol. 76(21), 2010
PMID: 20851994

Sambrook J, Fritsch EF, Maniatis T., 1989
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791

AUTHOR UNKNOWN, 2005

Sambrook J, Russell D., 2001
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Gotker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J. Biotechnol. 192 Pt B(), 2014
PMID: 24486440
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation.
Omumasaba CA, Okai N, Inui M, Yukawa H., J. Mol. Microbiol. Biotechnol. 8(2), 2004
PMID: 15925900
NADH dehydrogenase of Corynebacterium glutamicum. Purification of an NADH dehydrogenase II homolog able to oxidize NADPH.
Matsushita K, Otofuji A, Iwahashi M, Toyama H, Adachi O., FEMS Microbiol. Lett. 204(2), 2001
PMID: 11731134
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl. Environ. Microbiol. 79(19), 2013
PMID: 23892752
Electron transfer ability from NADH to menaquinone and from NADPH to oxygen of type II NADH dehydrogenase of Corynebacterium glutamicum.
Nantapong N, Otofuji A, Migita CT, Adachi O, Toyama H, Matsushita K., Biosci. Biotechnol. Biochem. 69(1), 2005
PMID: 15665480
Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA.
Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U., FEMS Microbiol. Lett. 204(2), 2001
PMID: 11731130
Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
Lindner SN, Petrov DP, Hagmann CT, Henrich A, Kramer R, Eikmanns BJ, Wendisch VF, Seibold GM., Appl. Environ. Microbiol. 79(8), 2013
PMID: 23396334
Proton translocation by transhydrogenase.
Jackson JB., FEBS Lett. 555(1), 2003
PMID: 14630339
Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.
Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Noh K, Noack S., Appl. Environ. Microbiol. 77(18), 2011
PMID: 21784914
Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity.
Auriol C, Bestel-Corre G, Claude JB, Soucaille P, Meynial-Salles I., Proc. Natl. Acad. Sci. U.S.A. 108(4), 2011
PMID: 21205901
Respiratory energy metabolism
Bott M, Niebisch A., 2005
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol. 10(), 2010
PMID: 21159175
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25576602
PubMed | Europe PMC

Suchen in

Google Scholar