Role of L-alanine for redox self-sufficient amination of alcohols
Klatte S, Wendisch VF (2015)
Microbial Cell Factories 14(1): 9.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Einrichtung
Abstract / Bemerkung
Background
In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578–5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed.
Results
The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-taCv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily responsible for pyruvate catabolism during redox self-sufficient amination of alcohols using this whole cell biocatalyst.
Conclusion
The replacement of the transaminase TaVf by TaCv, which showed higher activity at 42°C, in the artificial operon ald-adh-ta improved amination of alcohols in whole cell biotransformation. The addition of L-alanine, which was consumed by E. coli via pyruvate catabolism, was required for 100% product formation possibly by providing maintenance energy. Metabolic engineering revealed that pyruvate catabolism occurred primarily via oxidative decarboxylation to acetate by PoxB under the chosen biotranformation conditions.
Stichworte
Phosphate acetyltransferase;
Pyruvate oxidase;
Acetate kinase;
Acetate formation;
Energy maintenance;
Chromobacterium violaceum;
Transaminase;
Escherichia coli;
Whole cell biotransformation;
Redox self-sufficient amination
Erscheinungsjahr
2015
Zeitschriftentitel
Microbial Cell Factories
Band
14
Ausgabe
1
Art.-Nr.
9
ISSN
1475-2859
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2710193
Zitieren
Klatte S, Wendisch VF. Role of L-alanine for redox self-sufficient amination of alcohols. Microbial Cell Factories. 2015;14(1): 9.
Klatte, S., & Wendisch, V. F. (2015). Role of L-alanine for redox self-sufficient amination of alcohols. Microbial Cell Factories, 14(1), 9. doi:10.1186/s12934-014-0189-x
Klatte, Stephanie, and Wendisch, Volker F. 2015. “Role of L-alanine for redox self-sufficient amination of alcohols”. Microbial Cell Factories 14 (1): 9.
Klatte, S., and Wendisch, V. F. (2015). Role of L-alanine for redox self-sufficient amination of alcohols. Microbial Cell Factories 14:9.
Klatte, S., & Wendisch, V.F., 2015. Role of L-alanine for redox self-sufficient amination of alcohols. Microbial Cell Factories, 14(1): 9.
S. Klatte and V.F. Wendisch, “Role of L-alanine for redox self-sufficient amination of alcohols”, Microbial Cell Factories, vol. 14, 2015, : 9.
Klatte, S., Wendisch, V.F.: Role of L-alanine for redox self-sufficient amination of alcohols. Microbial Cell Factories. 14, : 9 (2015).
Klatte, Stephanie, and Wendisch, Volker F. “Role of L-alanine for redox self-sufficient amination of alcohols”. Microbial Cell Factories 14.1 (2015): 9.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:29Z
MD5 Prüfsumme
f7b026d7c9344f6a5fecbf6d88e161a2
Daten bereitgestellt von European Bioinformatics Institute (EBI)
7 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Improvement of whole-cell transamination with Saccharomyces cerevisiae using metabolic engineering and cell pre-adaptation.
Weber N, Gorwa-Grauslund M, Carlquist M., Microb Cell Fact 16(1), 2017
PMID: 28049528
Weber N, Gorwa-Grauslund M, Carlquist M., Microb Cell Fact 16(1), 2017
PMID: 28049528
In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.
Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W., Microb Cell Fact 16(1), 2017
PMID: 28754115
Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W., Microb Cell Fact 16(1), 2017
PMID: 28754115
Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion.
Knudsen JD, Hägglöf C, Weber N, Carlquist M., Microb Cell Fact 15(), 2016
PMID: 26879378
Knudsen JD, Hägglöf C, Weber N, Carlquist M., Microb Cell Fact 15(), 2016
PMID: 26879378
Enzymatic network for production of ether amines from alcohols.
Palacio CM, Crismaru CG, Bartsch S, Navickas V, Ditrich K, Breuer M, Abu R, Woodley JM, Baldenius K, Wu B, Janssen DB., Biotechnol Bioeng 113(9), 2016
PMID: 26915048
Palacio CM, Crismaru CG, Bartsch S, Navickas V, Ditrich K, Breuer M, Abu R, Woodley JM, Baldenius K, Wu B, Janssen DB., Biotechnol Bioeng 113(9), 2016
PMID: 26915048
23 References
Daten bereitgestellt von Europe PubMed Central.
Crystal structures of unbound and aminooxyacetate-bound Escherichia coli gamma-aminobutyrate aminotransferase.
Liu W, Peterson PE, Carter RJ, Zhou X, Langston JA, Fisher AJ, Toney MD., Biochemistry 43(34), 2004
PMID: 15323550
Liu W, Peterson PE, Carter RJ, Zhou X, Langston JA, Fisher AJ, Toney MD., Biochemistry 43(34), 2004
PMID: 15323550
Crystal structure of an (R)-selective ω-transaminase from Aspergillus terreus.
Lyskowski A, Gruber C, Steinkellner G, Schurmann M, Schwab H, Gruber K, Steiner K., PLoS ONE 9(1), 2014
PMID: 24498081
Lyskowski A, Gruber C, Steinkellner G, Schurmann M, Schwab H, Gruber K, Steiner K., PLoS ONE 9(1), 2014
PMID: 24498081
Cofactor regeneration at the lab scale.
Wichmann R, Vasic-Racki D., Adv. Biochem. Eng. Biotechnol. 92(), 2005
PMID: 15791939
Wichmann R, Vasic-Racki D., Adv. Biochem. Eng. Biotechnol. 92(), 2005
PMID: 15791939
Reductive amination by recombinant Escherichia coli: whole cell biotransformation of 2-keto-3-methylvalerate to L-isoleucine.
Lorenz E, Klatte S, Wendisch VF., J. Biotechnol. 168(3), 2013
PMID: 23831557
Lorenz E, Klatte S, Wendisch VF., J. Biotechnol. 168(3), 2013
PMID: 23831557
Redox self-sufficient biocatalyst network for the amination of primary alcohols.
Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W., Angew. Chem. Int. Ed. Engl. 51(36), 2012
PMID: 22887645
Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W., Angew. Chem. Int. Ed. Engl. 51(36), 2012
PMID: 22887645
Redox self-sufficient whole cell biotransformation for amination of alcohols.
Klatte S, Wendisch VF., Bioorg. Med. Chem. 22(20), 2014
PMID: 24894767
Klatte S, Wendisch VF., Bioorg. Med. Chem. 22(20), 2014
PMID: 24894767
AUTHOR UNKNOWN, 0
Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene.
Chang YY, Wang AY, Cronan JE Jr., Mol. Microbiol. 11(6), 1994
PMID: 8022274
Chang YY, Wang AY, Cronan JE Jr., Mol. Microbiol. 11(6), 1994
PMID: 8022274
Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli
Abdel-Hamid AM, Attwood MM, Guest JR., 2001
Abdel-Hamid AM, Attwood MM, Guest JR., 2001
Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity.
Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R., J. Bacteriol. 187(5), 2005
PMID: 15716429
Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R., J. Bacteriol. 187(5), 2005
PMID: 15716429
Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands.
Kuhn D, Fritzsch FS, Zhang X, Wendisch VF, Blank LM, Buhler B, Schmid A., J. Biotechnol. 163(2), 2012
PMID: 22922011
Kuhn D, Fritzsch FS, Zhang X, Wendisch VF, Blank LM, Buhler B, Schmid A., J. Biotechnol. 163(2), 2012
PMID: 22922011
The plasticity of global proteome and genome expression analyzed in closely related W3110 and MG1655 strains of a well-studied model organism, Escherichia coli-K12.
Vijayendran C, Polen T, Wendisch VF, Friehs K, Niehaus K, Flaschel E., J. Biotechnol. 128(4), 2007
PMID: 17331609
Vijayendran C, Polen T, Wendisch VF, Friehs K, Niehaus K, Flaschel E., J. Biotechnol. 128(4), 2007
PMID: 17331609
Substrate spectrum of omega-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis
Kaulmann U, Smithies K, Smith MEB, HaileS HC, Ward JM., 2007
Kaulmann U, Smithies K, Smith MEB, HaileS HC, Ward JM., 2007
Decreasing the stability and changing the substrate specificity of the Bacillus stearothermophilus alcohol dehydrogenase by single amino acid replacements.
Fiorentino G, Cannio R, Rossi M, Bartolucci S., Protein Eng. 11(10), 1998
PMID: 9862212
Fiorentino G, Cannio R, Rossi M, Bartolucci S., Protein Eng. 11(10), 1998
PMID: 9862212
Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17.
Shin JS, Yun H, Jang JW, Park I, Kim BG., Appl. Microbiol. Biotechnol. 61(5-6), 2003
PMID: 12687298
Shin JS, Yun H, Jang JW, Park I, Kim BG., Appl. Microbiol. Biotechnol. 61(5-6), 2003
PMID: 12687298
Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation.
Veit A, Polen T, Wendisch VF., Appl. Microbiol. Biotechnol. 74(2), 2006
PMID: 17273855
Veit A, Polen T, Wendisch VF., Appl. Microbiol. Biotechnol. 74(2), 2006
PMID: 17273855
Reduction of aerobic acetate production by Escherichia coli
Farmer WR, Liao JC., 1997
Farmer WR, Liao JC., 1997
Acetate accumulation through alternative metabolic pathways in ackA (-) pta (-) poxB (-) triple mutant in E. coli B (BL21).
Phue JN, Lee SJ, Kaufman JB, Negrete A, Shiloach J., Biotechnol. Lett. 32(12), 2010
PMID: 20703804
Phue JN, Lee SJ, Kaufman JB, Negrete A, Shiloach J., Biotechnol. Lett. 32(12), 2010
PMID: 20703804
Sambrook J, Russell D., 2001
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H., Mol. Syst. Biol. 2(), 2006
PMID: 16738554
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H., Mol. Syst. Biol. 2(), 2006
PMID: 16738554
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol.
Liu H, Naismith JH., BMC Biotechnol. 8(), 2008
PMID: 19055817
Liu H, Naismith JH., BMC Biotechnol. 8(), 2008
PMID: 19055817
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 25612558
PubMed | Europe PMC
Suchen in