Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems

Hummel W, Gröger H (2014)
Journal of biotechnology 191: 22-31.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Biocatalytic reduction reactions depending on nicotinamide coenzymes require an additional reaction to regenerate the consumed cofactor. For preparative application the preferred method is the simultaneous coupling of an in situ regeneration reaction. There are different strategically advantageous routes to achieve this goal. The standard method uses a second enzyme and a second co-substrate, for example formate and formate dehydrogenase or glucose and glucose dehydrogenase. Alternatively, a second substrate is employed which is converted by the same enzyme used for the primary reaction. For example, alcohol dehydrogenase catalyzed reactions are often coupled with excess 2-propanol which is oxidized to acetone during the regeneration of NAD(P)H. A third method utilizes a reaction-internal sequence by the direct coupling of an oxidizing and a reducing enzyme reaction. Neither an additional substrate nor a further regenerating enzyme are required for the recycling reaction. This kind of "closed-loop" or "self-sufficient" redox process for cofactor regeneration has been used rarely so far. Its most intriguing advantage is that even redox reactions with unstable precursors can be realized provided that this compound is produced in situ by an opposite redox reaction. This elegant method is applicable in special cases only but increasing numbers of examples have been published during the last years.
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of biotechnology
Band
191
Seite(n)
22-31
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2708851

Zitieren

Hummel W, Gröger H. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. Journal of biotechnology. 2014;191:22-31.
Hummel, W., & Gröger, H. (2014). Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. Journal of biotechnology, 191, 22-31. doi:10.1016/j.jbiotec.2014.07.449
Hummel, Werner, and Gröger, Harald. 2014. “Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems”. Journal of biotechnology 191: 22-31.
Hummel, W., and Gröger, H. (2014). Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. Journal of biotechnology 191, 22-31.
Hummel, W., & Gröger, H., 2014. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. Journal of biotechnology, 191, p 22-31.
W. Hummel and H. Gröger, “Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems”, Journal of biotechnology, vol. 191, 2014, pp. 22-31.
Hummel, W., Gröger, H.: Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. Journal of biotechnology. 191, 22-31 (2014).
Hummel, Werner, and Gröger, Harald. “Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems”. Journal of biotechnology 191 (2014): 22-31.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Haloferax volcanii as immobilised whole cell biocatalyst: new applications for halophilic systems.
Haque RU, Paradisi F, Allers T., Appl Microbiol Biotechnol 103(9), 2019
PMID: 30877354
New approaches to NAD(P)H regeneration in the biosynthesis systems.
Han L, Liang B., World J Microbiol Biotechnol 34(10), 2018
PMID: 30203299
Citrate as Cost-Efficient NADPH Regenerating Agent.
Oeggl R, Neumann T, Gätgens J, Romano D, Noack S, Rother D., Front Bioeng Biotechnol 6(), 2018
PMID: 30631764
Whole-cell biocatalysts by design.
Lin B, Tao Y., Microb Cell Fact 16(1), 2017
PMID: 28610636
An NADPH-dependent Lactobacillus composti short-chain dehydrogenase/reductase: characterization and application to (R)-1-phenylethanol synthesis.
Wang YJ, Ying BB, Chen M, Shen W, Liu ZQ, Zheng YG., World J Microbiol Biotechnol 33(7), 2017
PMID: 28623564
Recent progress on deep eutectic solvents in biocatalysis.
Xu P, Zheng GW, Zong MH, Li N, Lou WY., Bioresour Bioprocess 4(1), 2017
PMID: 28794956
Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids.
Khusnutdinova AN, Flick R, Popovic A, Brown G, Tchigvintsev A, Nocek B, Correia K, Joo JC, Mahadevan R, Yakunin AF., Biotechnol J 12(11), 2017
PMID: 28762640
Alkane biohydroxylation: Interests, constraints and future developments.
Soussan L, Pen N, Belleville MP, Marcano JS, Paolucci-Jeanjean D., J Biotechnol 222(), 2016
PMID: 26853477
Protein engineering approaches to chemical biotechnology.
Chen Z, Zeng AP., Curr Opin Biotechnol 42(), 2016
PMID: 27525565

47 References

Daten bereitgestellt von Europe PubMed Central.

Cloning, DNA sequencing and expression of (3-17)beta hydroxysteroid dehydrogenase from Pseudomonas testosteroni.
Abalain JH, Di Stefano S, Amet Y, Quemener E, Abalain-Colloc ML, Floch HH., J. Steroid Biochem. Mol. Biol. 44(2), 1993
PMID: 8382516
Large-scale enzymatic synthesis of 12-ketoursodeoxycholic acid from dehydrocholic acid by simultaneous combination of 3α-hydroxysteroid dehydrogenase from Pseudomonas testosteroni and 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens
Bakonyi, Z. Naturforsch. 67b(), 2012
Engineering novel biocatalytic routes for production of semisynthetic opiate drugs.
Boonstra B, Rathbone DA, Bruce NC., Biomol. Eng. 18(2), 2001
PMID: 11535415
Dicarbonyl reduction by single enzyme for the preparation of chiral diols.
Chen Y, Chen C, Wu X., Chem Soc Rev 41(5), 2012
PMID: 22222186
Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.
Constantinou A, Ghiotto F, Lam KF, Gavriilidis A., Analyst 139(1), 2014
PMID: 24223420
Clinical pharmacokinetics of therapeutic bile acids.
Crosignani A, Setchell KD, Invernizzi P, Larghi A, Rodrigues CM, Podda M., Clin Pharmacokinet 30(5), 1996
PMID: 8743334
The dihydroxyacetone unit--a versatile C(3) building block in organic synthesis.
Enders D, Voith M, Lenzen A., Angew. Chem. Int. Ed. Engl. 44(9), 2005
PMID: 15651077
A biocatalytic redox isomerisation.
Gargiulo S, Opperman DJ, Hanefeld U, Arends IW, Hollmann F., Chem. Commun. (Camb.) 48(53), 2012
PMID: 22555193
Enzyme-catalyzed asymmetric reduction of ketones
Gröger, 2012
Reduction: asymmetric biocatalytic reduction of ketones
Gröger, 2012
Stability enhancement of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase by a combination of immobilisation and chemical modification
Herr, J. Mol. Catal. B: Enzym. 97(), 2013
Enzyme-catalyzed reductive amination
Hummel, 2012
Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH.
Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J., Eur. J. Biochem. 269(9), 2002
PMID: 11985623
Efficient regeneration of NADPH using an engineered phosphite dehydrogenase.
Johannes TW, Woodyer RD, Zhao H., Biotechnol. Bioeng. 96(1), 2007
PMID: 16948172
Strategies for cofactor regeneration in biocatalyzed reductions
Kara, 2014
Synthetic applications of alcohol-dehydrogenase from Thermoanaerobium brockii
Keinan, Ann. N. Y. Acad. Sci. 501(), 1987
Dihydroxyacetone-containing sunless or self-tanning lotions.
Levy SB., J. Am. Acad. Dermatol. 27(6 Pt 1), 1992
PMID: 1479107
Engineering of phenylacetaldehyde reductase for efficient substrate conversion in concentrated 2-propanol.
Makino Y, Inoue K, Dairi T, Itoh N., Appl. Environ. Microbiol. 71(8), 2005
PMID: 16085867
Development of an improved phenylacetaldehyde reductase mutant by an efficient selection procedure
Makino, Appl. Microbiol. Biotechnol. 98(), 2013
A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol.
Mallin H, Wulf H, Bornscheuer UT., Enzyme Microb. Technol. 53(4), 2013
PMID: 23931695
Recent progress in biocatalysis for asymmetric oxidation and reduction
Matsuda, Tetrahedron: Asymmetry 20(), 2009
In vitro double-oxidation of n-heptane with direct co-factor regeneration
Müller, Adv. Synth. Catal. 355(), 2013
Enzyme-catalyzed regio- and enantioselective ketone reductions.
Muller M, Wolberg M, Schubert T, Hummel W., Adv. Biochem. Eng. Biotechnol. 92(), 2005
PMID: 15791940
Effect of high and low doses of ursodeoxycholic acid on gallstone dissolution in humans.
Salen G, Colalillo A, Verga D, Bagan E, Tint GS, Shefer S., Gastroenterology 78(6), 1980
PMID: 7372061
Enzymatic production of l-phenylalanine from the racemic mixture of d,l-phenyllactate
Schmidt, Appl. Microbiol. Biotechnol. 26(), 1987
Investigation of gas stripping and pervaporation for improved feasibility of two-stage butanol production process.
Setlhaku M, Heitmann S, Gorak A, Wichmann R., Bioresour. Technol. 136(), 2013
PMID: 23563441
Enzyme-catalyzed organic synthesis: NADH regeneration by using formate dehydrogenase
Shaked, J. Am. Chem. Soc. 102(), 1980
Direct oxidation of cycloalkanes to cycloalkanones with oxygen in water.
Staudt S, Burda E, Giese C, Muller CA, Marienhagen J, Schwaneberg U, Hummel W, Drauz K, Groger H., Angew. Chem. Int. Ed. Engl. 52(8), 2013
PMID: 23339093
Überwindung von thermodynamischen Limitierungen in substratgekoppelten Cofaktorregenerierungsverfahren
Stillger, Chem. Ing. Tech. 74(), 2002
The metabolism of primary, 7-oxo, and 7 beta-hydroxy bile acids by Clostridium absonum.
Sutherland JD, Macdonald IA., J. Lipid Res. 23(5), 1982
PMID: 7119570
Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli.
Thoden JB, Hegeman AD, Wesenberg G, Chapeau MC, Frey PA, Holden HM., Biochemistry 36(21), 1997
PMID: 9174344
L-amino acids from a racemic mixture of alpha-hydroxy acids.
Wandrey C, Fiolitakis E, Wichmann U, Kula MR., Ann. N. Y. Acad. Sci. 434(), 1984
PMID: 6596905
Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds.
Weckbecker A, Groger H, Hummel W., Adv. Biochem. Eng. Biotechnol. 120(), 2010
PMID: 20182929
Biotransformation of endo-bicyclo[2.2.1]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones
Willetts, J. Chem. Soc., Perkin Trans. 1(), 1991
Microbial conversion of d-xylose to xylitol
Winkelhausen, J. Ferment. Bioeng. 86(), 1998
Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds.
Winkler CK, Tasnadi G, Clay D, Hall M, Faber K., J. Biotechnol. 162(4), 2012
PMID: 22498437
Enantioselective rearrangement coupled with water addition: direct synthesis of enantiomerically pure saturated carboxylic acids from α, β-unsaturated aldehydes
Winkler, ChemCatChem 6(), 2014
Development of sustainable biocatalytic reduction processes
Wohlgemuth, 2014
Protein engineering of a thermostable polyol dehydrogenase.
Wulf H, Mallin H, Bornscheuer UT., Enzyme Microb. Technol. 51(4), 2012
PMID: 22883556
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25102236
PubMed | Europe PMC

Suchen in

Google Scholar