Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides

Gong H, Yang Y, Pluntke M, Marti O, Majer Z, Sewald N, Volkmer D (2014)
Dalton Transactions 43(44): 16857-16871.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gong, Haofei; Yang, Yi; Pluntke, Manuela; Marti, Othmar; Majer, Zsuzsa; Sewald, NorbertUniBi ; Volkmer, Dirk
Abstract / Bemerkung
Four amphiphilic peptides with designed hairpin structure were synthesized and their monolayers were employed as model systems to study biologically inspired calcium carbonate crystallization. Langmuir monolayers of hairpin peptides were investigated by surface pressure area isotherms, surface potential isotherms, Brewster angle microscopy (BAM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. A beta-hairpin conformation was found for all peptides at the air-water interface although their packing arrangements seem to be different. Crystallization of calcium carbonate under these peptide monolayers was investigated at different surface pressures and growth times both by in situ optical microscopy, BAM and ex situ investigations such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An amorphous calcium carbonate precursor was found at the initial crystallization stage. The crystallization process occurred in three stages. It starts from the nucleation of amorphous particles being a kinetically controlled process. Crystal nuclei subsequently aggregate to large particles and vaterite crystals start to form inside the amorphous layer, with the monolayer fluidity exerting an important role. The third process includes the re-crystallization of vaterite to calcite, which is thermodynamically controlled by monolayer structural factors including the monolayer flexibility and packing arrangement of the polar headgroups. Thus, the kinetic factors, monolayer fluidity and flexibility as well as structure factors govern the crystal morphology and polymorph distribution simultaneously and synergistically.
Erscheinungsjahr
2014
Zeitschriftentitel
Dalton Transactions
Band
43
Ausgabe
44
Seite(n)
16857-16871
ISSN
1477-9226
Page URI
https://pub.uni-bielefeld.de/record/2707941

Zitieren

Gong H, Yang Y, Pluntke M, et al. Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions. 2014;43(44):16857-16871.
Gong, H., Yang, Y., Pluntke, M., Marti, O., Majer, Z., Sewald, N., & Volkmer, D. (2014). Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions, 43(44), 16857-16871. doi:10.1039/c4dt01154f
Gong, Haofei, Yang, Yi, Pluntke, Manuela, Marti, Othmar, Majer, Zsuzsa, Sewald, Norbert, and Volkmer, Dirk. 2014. “Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides”. Dalton Transactions 43 (44): 16857-16871.
Gong, H., Yang, Y., Pluntke, M., Marti, O., Majer, Z., Sewald, N., and Volkmer, D. (2014). Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions 43, 16857-16871.
Gong, H., et al., 2014. Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions, 43(44), p 16857-16871.
H. Gong, et al., “Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides”, Dalton Transactions, vol. 43, 2014, pp. 16857-16871.
Gong, H., Yang, Y., Pluntke, M., Marti, O., Majer, Z., Sewald, N., Volkmer, D.: Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions. 43, 16857-16871 (2014).
Gong, Haofei, Yang, Yi, Pluntke, Manuela, Marti, Othmar, Majer, Zsuzsa, Sewald, Norbert, and Volkmer, Dirk. “Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides”. Dalton Transactions 43.44 (2014): 16857-16871.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mineralization and non-ideality: on nature's foundry.
Rao A, Cölfen H., Biophys Rev 8(4), 2016
PMID: 28510024

63 References

Daten bereitgestellt von Europe PubMed Central.


Simkiss, 1989

Lowenstam, 1989
Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization.
Addadi L, Weiner S., Proc. Natl. Acad. Sci. U.S.A. 82(12), 1985
PMID: 3858868

Belcher, Nature 381(), 1996
Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM.
Levi-Kalisman Y, Falini G, Addadi L, Weiner S., J. Struct. Biol. 135(1), 2001
PMID: 11562161

Sun, RSC Adv. 2(), 2012
An acidic matrix protein, Pif, is a key macromolecule for nacre formation.
Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H., Science 325(5946), 2009
PMID: 19679771

Levi, Chem. – Eur. J. 4(), 1998

DeOliveira, J. Am. Chem. Soc. 119(), 1997

Li, Cryst. Growth Des. 2(), 2002
Design of a synthetic foldamer that modifies the growth of calcite crystals.
Estroff LA, Incarvito CD, Hamilton AD., J. Am. Chem. Soc. 126(1), 2004
PMID: 14709030

Falini, Science 271(), 1996

Kim, Cryst. Growth Des. 6(), 2006

Mann, 2001

Evans, Curr. Opin. Colloid Interface Sci. 8(), 2003
Acidic peptides acting as growth modifiers of calcite crystals.
Volkmer D, Fricke M, Huber T, Sewald N., Chem. Commun. (Camb.) (16), 2004
PMID: 15306926
Intrinsically disordered mollusk shell prismatic protein that modulates calcium carbonate crystal growth.
Ndao M, Keene E, Amos FF, Rewari G, Ponce CB, Estroff L, Evans JS., Biomacromolecules 11(10), 2010
PMID: 20831150
Nacre protein fragment templates lamellar aragonite growth.
Metzler RA, Evans JS, Killian CE, Zhou D, Churchill TH, Appathurai NP, Coppersmith SN, Gilbert PU., J. Am. Chem. Soc. 132(18), 2010
PMID: 20397648

Cavalli, Angew. Chem. 118(), 2006

Chevalier, Cryst. Growth Des. 12(), 2012

Mann, Nature 332(), 1988

Heywood, Adv. Mater. 6(), 1994

Heywood, Adv. Mater. 4(), 1992

Heywood, J. Am. Chem. Soc. 114(), 1992

Xu, J. Am. Chem. Soc. 120(), 1998

DiMasi, CrystEngComm 5(), 2003

Volkmer, J. Mater. Chem. 14(), 2004

Volkmer, Mater. Sci. Eng., C 25(), 2005

Fricke, Cryst. Growth Des. 6(), 2006

Fricke, Top. Curr. Chem. 270(), 2007
Template adaptability is key in the oriented crystallization of CaCO3.
Popescu DC, Smulders MM, Pichon BP, Chebotareva N, Kwak SY, van Asselen OL, Sijbesma RP, DiMasi E, Sommerdijk NA., J. Am. Chem. Soc. 129(45), 2007
PMID: 17944471
Self-assembled monolayers from a designed combinatorial library of de novo beta-sheet proteins.
Xu G, Wang W, Groves JT, Hecht MH., Proc. Natl. Acad. Sci. U.S.A. 98(7), 2001
PMID: 11274383
Elasticity of crystalline beta-sheet monolayers.
Isenberg H, Kjaer K, Rapaport H., J. Am. Chem. Soc. 128(38), 2006
PMID: 16984197

Rapaport, J. Am. Chem. Soc. 122(), 2000
Optical spectroscopic investigations of model beta-sheet hairpins in aqueous solution.
Hilario J, Kubelka J, Keiderling TA., J. Am. Chem. Soc. 125(25), 2003
PMID: 12812496

Aravinda, Angew. Chem. 114(), 2002

Powers, Angew. Chem. 114(), 2002
Two-dimensional ordered beta-sheet lipopeptide monolayers.
Cavalli S, Handgraaf JW, Tellers EE, Popescu DC, Overhand M, Kjaer K, Vaiser V, Sommerdijk NA, Rapaport H, Kros A., J. Am. Chem. Soc. 128(42), 2006
PMID: 17044724
Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins.
Krimm S, Bandekar J., Adv. Protein Chem. 38(), 1986
PMID: 3541539
Thermodynamics of epitaxial calcite nucleation on self-assembled monolayers.
Travaille AM, Steijven EG, Meekes H, van Kempen H., J Phys Chem B 109(12), 2005
PMID: 16851605
Highly oriented self-assembled monolayers as templates for epitaxial calcite growth.
Travaille AM, Kaptijn L, Verwer P, Hulsken B, Elemans JA, Nolte RJ, van Kempen H., J. Am. Chem. Soc. 125(38), 2003
PMID: 13129360

Ahn, J. Phys. Chem. 100(), 1996
Amorphous layer around aragonite platelets in nacre.
Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H., Proc. Natl. Acad. Sci. U.S.A. 102(36), 2005
PMID: 16129830
Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.
Politi Y, Arad T, Klein E, Weiner S, Addadi L., Science 306(5699), 2004
PMID: 15539597

Politi, Adv. Funct. Mater. 16(), 2006
Structural biology. Choosing the crystallization path less traveled.
Weiner S, Sagi I, Addadi L., Science 309(5737), 2005
PMID: 16099970
Structural development of mercaptophenol self-assembled monolayers and the overlying mineral phase during templated CaCO3 crystallization from a transient amorphous film.
Lee JR, Han TY, Willey TM, Wang D, Meulenberg RW, Nilsson J, Dove PM, Terminello LJ, van Buuren T, De Yoreo JJ., J. Am. Chem. Soc. 129(34), 2007
PMID: 17672454

Bolze, Langmuir 18(), 2002

Cölfen, Angew. Chem. 115(), 2003
Minerals formed by organisms.
Lowenstam HA., Science 211(4487), 1981
PMID: 7008198

Olszta, Chem. Mater. 16(), 2004
How does a transient amorphous precursor template crystallization.
Zhang TH, Liu XY., J. Am. Chem. Soc. 129(44), 2007
PMID: 17929918

Kuther, Chem. Mater. 11(), 1999
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25292256
PubMed | Europe PMC

Suchen in

Google Scholar