Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides
Gong H, Yang Y, Pluntke M, Marti O, Majer Z, Sewald N, Volkmer D (2014)
Dalton Transactions 43(44): 16857-16871.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gong, Haofei;
Yang, Yi;
Pluntke, Manuela;
Marti, Othmar;
Majer, Zsuzsa;
Sewald, NorbertUniBi ;
Volkmer, Dirk
Einrichtung
Abstract / Bemerkung
Four amphiphilic peptides with designed hairpin structure were synthesized and their monolayers were employed as model systems to study biologically inspired calcium carbonate crystallization. Langmuir monolayers of hairpin peptides were investigated by surface pressure area isotherms, surface potential isotherms, Brewster angle microscopy (BAM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. A beta-hairpin conformation was found for all peptides at the air-water interface although their packing arrangements seem to be different. Crystallization of calcium carbonate under these peptide monolayers was investigated at different surface pressures and growth times both by in situ optical microscopy, BAM and ex situ investigations such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An amorphous calcium carbonate precursor was found at the initial crystallization stage. The crystallization process occurred in three stages. It starts from the nucleation of amorphous particles being a kinetically controlled process. Crystal nuclei subsequently aggregate to large particles and vaterite crystals start to form inside the amorphous layer, with the monolayer fluidity exerting an important role. The third process includes the re-crystallization of vaterite to calcite, which is thermodynamically controlled by monolayer structural factors including the monolayer flexibility and packing arrangement of the polar headgroups. Thus, the kinetic factors, monolayer fluidity and flexibility as well as structure factors govern the crystal morphology and polymorph distribution simultaneously and synergistically.
Erscheinungsjahr
2014
Zeitschriftentitel
Dalton Transactions
Band
43
Ausgabe
44
Seite(n)
16857-16871
ISSN
1477-9226
Page URI
https://pub.uni-bielefeld.de/record/2707941
Zitieren
Gong H, Yang Y, Pluntke M, et al. Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions. 2014;43(44):16857-16871.
Gong, H., Yang, Y., Pluntke, M., Marti, O., Majer, Z., Sewald, N., & Volkmer, D. (2014). Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions, 43(44), 16857-16871. doi:10.1039/c4dt01154f
Gong, Haofei, Yang, Yi, Pluntke, Manuela, Marti, Othmar, Majer, Zsuzsa, Sewald, Norbert, and Volkmer, Dirk. 2014. “Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides”. Dalton Transactions 43 (44): 16857-16871.
Gong, H., Yang, Y., Pluntke, M., Marti, O., Majer, Z., Sewald, N., and Volkmer, D. (2014). Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions 43, 16857-16871.
Gong, H., et al., 2014. Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions, 43(44), p 16857-16871.
H. Gong, et al., “Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides”, Dalton Transactions, vol. 43, 2014, pp. 16857-16871.
Gong, H., Yang, Y., Pluntke, M., Marti, O., Majer, Z., Sewald, N., Volkmer, D.: Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides. Dalton Transactions. 43, 16857-16871 (2014).
Gong, Haofei, Yang, Yi, Pluntke, Manuela, Marti, Othmar, Majer, Zsuzsa, Sewald, Norbert, and Volkmer, Dirk. “Calcium carbonate crystal growth beneath Langmuir monolayers of acidic beta-hairpin peptides”. Dalton Transactions 43.44 (2014): 16857-16871.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Mineralization and non-ideality: on nature's foundry.
Rao A, Cölfen H., Biophys Rev 8(4), 2016
PMID: 28510024
Rao A, Cölfen H., Biophys Rev 8(4), 2016
PMID: 28510024
63 References
Daten bereitgestellt von Europe PubMed Central.
Simkiss, 1989
Lowenstam, 1989
Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization.
Addadi L, Weiner S., Proc. Natl. Acad. Sci. U.S.A. 82(12), 1985
PMID: 3858868
Addadi L, Weiner S., Proc. Natl. Acad. Sci. U.S.A. 82(12), 1985
PMID: 3858868
Belcher, Nature 381(), 1996
Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM.
Levi-Kalisman Y, Falini G, Addadi L, Weiner S., J. Struct. Biol. 135(1), 2001
PMID: 11562161
Levi-Kalisman Y, Falini G, Addadi L, Weiner S., J. Struct. Biol. 135(1), 2001
PMID: 11562161
Sun, RSC Adv. 2(), 2012
An acidic matrix protein, Pif, is a key macromolecule for nacre formation.
Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H., Science 325(5946), 2009
PMID: 19679771
Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H., Science 325(5946), 2009
PMID: 19679771
Levi, Chem. – Eur. J. 4(), 1998
DeOliveira, J. Am. Chem. Soc. 119(), 1997
Li, Cryst. Growth Des. 2(), 2002
Design of a synthetic foldamer that modifies the growth of calcite crystals.
Estroff LA, Incarvito CD, Hamilton AD., J. Am. Chem. Soc. 126(1), 2004
PMID: 14709030
Estroff LA, Incarvito CD, Hamilton AD., J. Am. Chem. Soc. 126(1), 2004
PMID: 14709030
Structural features that distinguish kinetically distinct biomineralization polypeptides.
Collino S, Evans JS., Biomacromolecules 8(5), 2007
PMID: 17381152
Collino S, Evans JS., Biomacromolecules 8(5), 2007
PMID: 17381152
Falini, Science 271(), 1996
Kim, Cryst. Growth Des. 6(), 2006
CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology.
Fu G, Valiyaveettil S, Wopenka B, Morse DE., Biomacromolecules 6(3), 2005
PMID: 15877344
Fu G, Valiyaveettil S, Wopenka B, Morse DE., Biomacromolecules 6(3), 2005
PMID: 15877344
Mann, 2001
Evans, Curr. Opin. Colloid Interface Sci. 8(), 2003
Acidic peptides acting as growth modifiers of calcite crystals.
Volkmer D, Fricke M, Huber T, Sewald N., Chem. Commun. (Camb.) (16), 2004
PMID: 15306926
Volkmer D, Fricke M, Huber T, Sewald N., Chem. Commun. (Camb.) (16), 2004
PMID: 15306926
Intrinsically disordered mollusk shell prismatic protein that modulates calcium carbonate crystal growth.
Ndao M, Keene E, Amos FF, Rewari G, Ponce CB, Estroff L, Evans JS., Biomacromolecules 11(10), 2010
PMID: 20831150
Ndao M, Keene E, Amos FF, Rewari G, Ponce CB, Estroff L, Evans JS., Biomacromolecules 11(10), 2010
PMID: 20831150
Nacre protein fragment templates lamellar aragonite growth.
Metzler RA, Evans JS, Killian CE, Zhou D, Churchill TH, Appathurai NP, Coppersmith SN, Gilbert PU., J. Am. Chem. Soc. 132(18), 2010
PMID: 20397648
Metzler RA, Evans JS, Killian CE, Zhou D, Churchill TH, Appathurai NP, Coppersmith SN, Gilbert PU., J. Am. Chem. Soc. 132(18), 2010
PMID: 20397648
Cavalli, Angew. Chem. 118(), 2006
Chevalier, Cryst. Growth Des. 12(), 2012
Mann, Nature 332(), 1988
Heywood, Adv. Mater. 6(), 1994
Heywood, Adv. Mater. 4(), 1992
Heywood, J. Am. Chem. Soc. 114(), 1992
Xu, J. Am. Chem. Soc. 120(), 1998
DiMasi, CrystEngComm 5(), 2003
Complementary control by additives of the kinetics of amorphous CaCO3 mineralization at an organic interface: in-situ synchrotron x-ray observations.
DiMasi E, Kwak SY, Amos FF, Olszta MJ, Lush D, Gower LB., Phys. Rev. Lett. 97(4), 2006
PMID: 16907589
DiMasi E, Kwak SY, Amos FF, Olszta MJ, Lush D, Gower LB., Phys. Rev. Lett. 97(4), 2006
PMID: 16907589
Volkmer, J. Mater. Chem. 14(), 2004
Volkmer, Mater. Sci. Eng., C 25(), 2005
Fricke, Cryst. Growth Des. 6(), 2006
Fricke, Top. Curr. Chem. 270(), 2007
Template adaptability is key in the oriented crystallization of CaCO3.
Popescu DC, Smulders MM, Pichon BP, Chebotareva N, Kwak SY, van Asselen OL, Sijbesma RP, DiMasi E, Sommerdijk NA., J. Am. Chem. Soc. 129(45), 2007
PMID: 17944471
Popescu DC, Smulders MM, Pichon BP, Chebotareva N, Kwak SY, van Asselen OL, Sijbesma RP, DiMasi E, Sommerdijk NA., J. Am. Chem. Soc. 129(45), 2007
PMID: 17944471
Self-assembled monolayers from a designed combinatorial library of de novo beta-sheet proteins.
Xu G, Wang W, Groves JT, Hecht MH., Proc. Natl. Acad. Sci. U.S.A. 98(7), 2001
PMID: 11274383
Xu G, Wang W, Groves JT, Hecht MH., Proc. Natl. Acad. Sci. U.S.A. 98(7), 2001
PMID: 11274383
Elasticity of crystalline beta-sheet monolayers.
Isenberg H, Kjaer K, Rapaport H., J. Am. Chem. Soc. 128(38), 2006
PMID: 16984197
Isenberg H, Kjaer K, Rapaport H., J. Am. Chem. Soc. 128(38), 2006
PMID: 16984197
Rapaport, J. Am. Chem. Soc. 122(), 2000
Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins.
Buck M., Q. Rev. Biophys. 31(3), 1998
PMID: 10384688
Buck M., Q. Rev. Biophys. 31(3), 1998
PMID: 10384688
Geometry and efficacy of cross-strand Trp/Trp, Trp/Tyr, and Tyr/Tyr aromatic interaction in a beta-hairpin peptide.
Wu L, McElheny D, Takekiyo T, Keiderling TA., Biochemistry 49(22), 2010
PMID: 20423111
Wu L, McElheny D, Takekiyo T, Keiderling TA., Biochemistry 49(22), 2010
PMID: 20423111
Optical spectroscopic investigations of model beta-sheet hairpins in aqueous solution.
Hilario J, Kubelka J, Keiderling TA., J. Am. Chem. Soc. 125(25), 2003
PMID: 12812496
Hilario J, Kubelka J, Keiderling TA., J. Am. Chem. Soc. 125(25), 2003
PMID: 12812496
Aravinda, Angew. Chem. 114(), 2002
Powers, Angew. Chem. 114(), 2002
Two-dimensional ordered beta-sheet lipopeptide monolayers.
Cavalli S, Handgraaf JW, Tellers EE, Popescu DC, Overhand M, Kjaer K, Vaiser V, Sommerdijk NA, Rapaport H, Kros A., J. Am. Chem. Soc. 128(42), 2006
PMID: 17044724
Cavalli S, Handgraaf JW, Tellers EE, Popescu DC, Overhand M, Kjaer K, Vaiser V, Sommerdijk NA, Rapaport H, Kros A., J. Am. Chem. Soc. 128(42), 2006
PMID: 17044724
Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins.
Krimm S, Bandekar J., Adv. Protein Chem. 38(), 1986
PMID: 3541539
Krimm S, Bandekar J., Adv. Protein Chem. 38(), 1986
PMID: 3541539
Hydrogels coupled with self-assembled monolayers: an in vitro matrix to study calcite biomineralization.
Li H, Estroff LA., J. Am. Chem. Soc. 129(17), 2007
PMID: 17411038
Li H, Estroff LA., J. Am. Chem. Soc. 129(17), 2007
PMID: 17411038
Thermodynamics of epitaxial calcite nucleation on self-assembled monolayers.
Travaille AM, Steijven EG, Meekes H, van Kempen H., J Phys Chem B 109(12), 2005
PMID: 16851605
Travaille AM, Steijven EG, Meekes H, van Kempen H., J Phys Chem B 109(12), 2005
PMID: 16851605
Highly oriented self-assembled monolayers as templates for epitaxial calcite growth.
Travaille AM, Kaptijn L, Verwer P, Hulsken B, Elemans JA, Nolte RJ, van Kempen H., J. Am. Chem. Soc. 125(38), 2003
PMID: 13129360
Travaille AM, Kaptijn L, Verwer P, Hulsken B, Elemans JA, Nolte RJ, van Kempen H., J. Am. Chem. Soc. 125(38), 2003
PMID: 13129360
Effect of magnesium ions on oriented growth of calcite on carboxylic acid functionalized self-assembled monolayer.
Han YJ, Aizenberg J., J. Am. Chem. Soc. 125(14), 2003
PMID: 12670208
Han YJ, Aizenberg J., J. Am. Chem. Soc. 125(14), 2003
PMID: 12670208
Ahn, J. Phys. Chem. 100(), 1996
Crystal structure analysis of [Ca(O3SC18H37)2(DMSO)2], a lamellar coordination polymer and its relevance for model studies in biomineralization.
Volkmer D, Mayr N, Fricke M., Dalton Trans (41), 2006
PMID: 17047737
Volkmer D, Mayr N, Fricke M., Dalton Trans (41), 2006
PMID: 17047737
Observation of an organic-inorganic lattice match during biomimetic growth of (001)-oriented calcite crystals under floating sulfate monolayers.
Kewalramani S, Kim K, Stripe B, Evmenenko G, Dommett GH, Dutta P., Langmuir 24(19), 2008
PMID: 18774837
Kewalramani S, Kim K, Stripe B, Evmenenko G, Dommett GH, Dutta P., Langmuir 24(19), 2008
PMID: 18774837
Amorphous layer around aragonite platelets in nacre.
Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H., Proc. Natl. Acad. Sci. U.S.A. 102(36), 2005
PMID: 16129830
Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H., Proc. Natl. Acad. Sci. U.S.A. 102(36), 2005
PMID: 16129830
Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.
Politi Y, Arad T, Klein E, Weiner S, Addadi L., Science 306(5699), 2004
PMID: 15539597
Politi Y, Arad T, Klein E, Weiner S, Addadi L., Science 306(5699), 2004
PMID: 15539597
Politi, Adv. Funct. Mater. 16(), 2006
Structural biology. Choosing the crystallization path less traveled.
Weiner S, Sagi I, Addadi L., Science 309(5737), 2005
PMID: 16099970
Weiner S, Sagi I, Addadi L., Science 309(5737), 2005
PMID: 16099970
Structural development of mercaptophenol self-assembled monolayers and the overlying mineral phase during templated CaCO3 crystallization from a transient amorphous film.
Lee JR, Han TY, Willey TM, Wang D, Meulenberg RW, Nilsson J, Dove PM, Terminello LJ, van Buuren T, De Yoreo JJ., J. Am. Chem. Soc. 129(34), 2007
PMID: 17672454
Lee JR, Han TY, Willey TM, Wang D, Meulenberg RW, Nilsson J, Dove PM, Terminello LJ, van Buuren T, De Yoreo JJ., J. Am. Chem. Soc. 129(34), 2007
PMID: 17672454
Bolze, Langmuir 18(), 2002
Cölfen, Angew. Chem. 115(), 2003
Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.
Cheng X, Gower LB., Biotechnol. Prog. 22(1), 2006
PMID: 16454504
Cheng X, Gower LB., Biotechnol. Prog. 22(1), 2006
PMID: 16454504
Olszta, Chem. Mater. 16(), 2004
How does a transient amorphous precursor template crystallization.
Zhang TH, Liu XY., J. Am. Chem. Soc. 129(44), 2007
PMID: 17929918
Zhang TH, Liu XY., J. Am. Chem. Soc. 129(44), 2007
PMID: 17929918
Kuther, Chem. Mater. 11(), 1999
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 25292256
PubMed | Europe PMC
Suchen in