Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements

Sharples JW, Collison D, McInnes EJL, Schnack J, Palacios E, Evangelisti M (2014)
Nature Communications 5(1): 5321.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Sharples, Joseph W.; Collison, David; McInnes, Eric J. L.; Schnack, JürgenUniBi ; Palacios, Elias; Evangelisti, Marco
Abstract / Bemerkung
Geometric spin frustration in low-dimensional materials, such as the two-dimensional kagome or triangular antiferromagnetic nets, can significantly enhance the change of the magnetic entropy and adiabatic temperature following a change in the applied magnetic field, that is, the magnetocaloric effect. In principle, an equivalent outcome should also be observable in certain high-symmetry zero-dimensional, that is, molecular, structures with frustrated topologies. Here we report experimental realization of this in a heptametallic gadolinium molecule. Adiabatic demagnetization experiments reach similar to 200 mK, the first sub-Kelvin cooling with any molecular nanomagnet, and reveal isentropes (the constant entropy paths followed in the temperature-field plane) with a rich structure. The latter is shown to be a direct manifestation of the trigonal antiferromagnetic net structure, allowing study of frustration-enhanced magnetocaloric effects in a finite system.
Erscheinungsjahr
2014
Zeitschriftentitel
Nature Communications
Band
5
Ausgabe
1
Art.-Nr.
5321
ISSN
2041-1723
eISSN
2041-1723
Page URI
https://pub.uni-bielefeld.de/record/2707882

Zitieren

Sharples JW, Collison D, McInnes EJL, Schnack J, Palacios E, Evangelisti M. Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nature Communications. 2014;5(1): 5321.
Sharples, J. W., Collison, D., McInnes, E. J. L., Schnack, J., Palacios, E., & Evangelisti, M. (2014). Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nature Communications, 5(1), 5321. doi:10.1038/ncomms6321
Sharples, Joseph W., Collison, David, McInnes, Eric J. L., Schnack, Jürgen, Palacios, Elias, and Evangelisti, Marco. 2014. “Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements”. Nature Communications 5 (1): 5321.
Sharples, J. W., Collison, D., McInnes, E. J. L., Schnack, J., Palacios, E., and Evangelisti, M. (2014). Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nature Communications 5:5321.
Sharples, J.W., et al., 2014. Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nature Communications, 5(1): 5321.
J.W. Sharples, et al., “Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements”, Nature Communications, vol. 5, 2014, : 5321.
Sharples, J.W., Collison, D., McInnes, E.J.L., Schnack, J., Palacios, E., Evangelisti, M.: Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nature Communications. 5, : 5321 (2014).
Sharples, Joseph W., Collison, David, McInnes, Eric J. L., Schnack, Jürgen, Palacios, Elias, and Evangelisti, Marco. “Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements”. Nature Communications 5.1 (2014): 5321.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

NiII-LnIII complexes with o-vanillin as the main ligand: syntheses, structures, magnetic and magnetocaloric properties.
Costes JP, Dahan F, Vendier L, Shova S, Lorusso G, Evangelisti M., Dalton Trans 47(4), 2018
PMID: 29265143
Observation of short range order driven large refrigerant capacity in chemically disordered single phase compound Dy2Ni0.87Si2.95.
Pakhira S, Mazumdar C, Choudhury D, Ranganathan R, Giri S., Phys Chem Chem Phys 20(19), 2018
PMID: 29736538
Rotating magnetocaloric effect and unusual magnetic features in metallic strongly anisotropic geometrically frustrated TmB4.
Orendáč M, Gabáni S, Gažo E, Pristáš G, Shitsevalova N, Siemensmeyer K, Flachbart K., Sci Rep 8(1), 2018
PMID: 30026580
Magnetic properties of transition metal dimers probed by inelastic neutron scattering.
Ansbro S, Moreno-Pineda E, Yu W, Ollivier J, Mutka H, Ruben M, Chiesa A., Dalton Trans 47(34), 2018
PMID: 30074034
Tetradecanuclearity in 3d-4f chemistry: relaxation and magnetocaloric effects in [NiLn] species.
Canaj AB, Kalofolias DA, Siczek M, Lis T, McNab R, Lorusso G, Inglis R, Evangelisti M, Milios CJ., Dalton Trans 46(11), 2017
PMID: 28220920
Criticality-Enhanced Magnetocaloric Effect in Quantum Spin Chain Material Copper Nitrate.
Xiang JS, Chen C, Li W, Sheng XL, Su N, Cheng ZH, Chen Q, Chen ZY., Sci Rep 7(), 2017
PMID: 28294147
A family of 'windmill'-like {Cu6Ln12} complexes exhibiting single-molecule magnetism behavior and large magnetic entropy changes.
Alexandropoulos DI, Poole KM, Cunha-Silva L, Ahmad Sheikh J, Wernsdorfer W, Christou G, Stamatatos TC., Chem Commun (Camb) 53(30), 2017
PMID: 28361136
A topologically unique alternating {CoGd} magnetocaloric ring.
Ojea MJH, Lorusso G, Craig GA, Wilson C, Evangelisti M, Murrie M., Chem Commun (Camb) 53(35), 2017
PMID: 28405656
Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR.
Nehrkorn J, Holldack K, Bittl R, Schnegg A., J Magn Reson 280(), 2017
PMID: 28579095
Magnetic frustration induced large magnetocaloric effect in the absence of long range magnetic order.
Pakhira S, Mazumdar C, Ranganathan R, Avdeev M., Sci Rep 7(1), 2017
PMID: 28779145
Rotating Magnetocaloric Effect in an Anisotropic Molecular Dimer.
Lorusso G, Roubeau O, Evangelisti M., Angew Chem Int Ed Engl 55(10), 2016
PMID: 26834032
Observation of the influence of dipolar and spin frustration effects on the magnetocaloric properties of a trigonal prismatic {Gd7} molecular nanomagnet.
Pineda EM, Lorusso G, Zangana KH, Palacios E, Schnack J, Evangelisti M, Winpenny REP, McInnes EJL., Chem Sci 7(8), 2016
PMID: 30155137
A pseudo-icosahedral cage {Gd12} based on aminomethylphosphonate.
Zhang ZM, Zangana KH, Kostopoulos AK, Tong ML, Winpenny RE., Dalton Trans 45(22), 2016
PMID: 27188600
Building 1D lanthanide chains and non-symmetrical [Ln2] "triple-decker" clusters using salen-type ligands: magnetic cooling and relaxation phenomena.
Canaj AB, Siczek M, Otręba M, Lis T, Lorusso G, Evangelisti M, Milios CJ., Dalton Trans 45(46), 2016
PMID: 27827484
A family of dinuclear lanthanide(III) complexes from the use of a tridentate Schiff base.
Anastasiadis NC, Kalofolias DA, Philippidis A, Tzani S, Raptopoulou CP, Psycharis V, Milios CJ, Escuer A, Perlepes SP., Dalton Trans 44(22), 2015
PMID: 25952755
Magnetic and magnetocaloric properties of an unusual family of carbonate-panelled [Ln(III)(6)Zn(III)(2)] cages.
Sethi W, Sanz S, Pedersen KS, Sørensen MA, Nichol GS, Lorusso G, Evangelisti M, Brechin EK, Piligkos S., Dalton Trans 44(22), 2015
PMID: 25967745
A Strongly Spin-Frustrated Fe(III) 7 Complex with a Canted Intermediate Spin Ground State of S=7/2 or 9/2.
Mondal KC, Mereacre V, Kostakis GE, Lan Y, Anson CE, Prisecaru I, Waldmann O, Powell AK., Chemistry 21(30), 2015
PMID: 26073059
Layered gadolinium hydroxides for low-temperature magnetic cooling.
Abellán G, Espallargas GM, Lorusso G, Evangelisti M, Coronado E., Chem Commun (Camb) 51(75), 2015
PMID: 26256944
Low temperature magnetic properties and spin dynamics in single crystals of Cr8Zn antiferromagnetic molecular rings.
Adelnia F, Chiesa A, Bordignon S, Carretta S, Ghirri A, Candini A, Cervetti C, Evangelisti M, Affronte M, Sheikin I, Winpenny R, Timco G, Borsa F, Lascialfari A., J Chem Phys 143(24), 2015
PMID: 26723685

29 References

Daten bereitgestellt von Europe PubMed Central.

Attainment of temperatures below 1° absolute by demagnetization of Gd(SO).8HO
AUTHOR UNKNOWN, 1933
Magnetische Untersuchungen über einige Wirkungen der Coerzitivkraft
AUTHOR UNKNOWN, 1881
Magnetocaloric effect and magnetic cooling near a field-induced quantum critical point
AUTHOR UNKNOWN, 2011

AUTHOR UNKNOWN, 2011
Magnetocaloric effect in one-dimensional antiferromagnets
AUTHOR UNKNOWN, 2004
Delta chain with ferromagnetic and antiferromagnetic interactions at the critical point
AUTHOR UNKNOWN, 2014
Magnetocaloric effect in two-dimensional spin-1/2 antiferromagnets
AUTHOR UNKNOWN, 2006
Macroscopic magnetization jumps due to independent magnons in frustrated quantum spin lattices.
Schulenburg J, Honecker A, Schnack J, Richter J, Schmidt HJ., Phys. Rev. Lett. 88(16), 2002
PMID: 11955262
Finite low-temperature entropy of some strongly frustrated quantum spin lattices in the vicinity of the saturation field
AUTHOR UNKNOWN, 2004
Competing spin phases in geometrically frustrated magnetic molecules.
Schroder C, Nojiri H, Schnack J, Hage P, Luban M, Kogerler P., Phys. Rev. Lett. 94(1), 2005
PMID: 15698128
Enhanced magnetocaloric effect in frustrated magnetic molecules with icosahedral symmetry
AUTHOR UNKNOWN, 2007
Frustration-induced exotic properties of magnetic molecules
AUTHOR UNKNOWN, 2007
Lanthanide disks chill well and relax slowly
AUTHOR UNKNOWN, 2011
Numerically exact and approximate determination of energy eigenvalues for antiferromagnetic molecules using irreducible tensor operators and general point-group symmetries
AUTHOR UNKNOWN, 2009
Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries
AUTHOR UNKNOWN, 2010
Recipes for enhanced molecular cooling.
Evangelisti M, Brechin EK., Dalton Trans 39(20), 2010
PMID: 21488263
A dense metal-organic framework for enhanced magnetic refrigeration.
Lorusso G, Sharples JW, Palacios E, Roubeau O, Brechin EK, Sessoli R, Rossin A, Tuna F, McInnes EJ, Collison D, Evangelisti M., Adv. Mater. Weinheim 25(33), 2013
PMID: 23813875
Chilling with magnetic molecules
AUTHOR UNKNOWN, 2012
Spin-enhanced magnetocaloric effect in molecular nanomagnets
AUTHOR UNKNOWN, 2005
[Mn(III)4Ln(III)4] calix[4]arene clusters as enhanced magnetic coolers and molecular magnets.
Karotsis G, Kennedy S, Teat SJ, Beavers CM, Fowler DA, Morales JJ, Evangelisti M, Dalgarno SJ, Brechin EK., J. Am. Chem. Soc. 132(37), 2010
PMID: 20677762
Large magnetocaloric effect in a Wells-Dawson type {NiGdP} cage
AUTHOR UNKNOWN, 2011
Molecular coolers: the case for [CuGd]
AUTHOR UNKNOWN, 2011
Cryogenic magnetocaloric effect in a ferromagnetic dimer
AUTHOR UNKNOWN, 2011
Co-Ln mixed-metal phosphonate grids and cages as molecular magnetic refrigerants.
Zheng YZ, Evangelisti M, Tuna F, Winpenny RE., J. Am. Chem. Soc. 134(2), 2012
PMID: 22171923
Magnetic cooling at a single molecule level: a spectroscopic investigation of isolated molecules on a surface.
Corradini V, Ghirri A, Candini A, Biagi R, del Pennino U, Dotti G, Otero E, Choueikani F, Blagg RJ, McInnes EJ, Affronte M., Adv. Mater. Weinheim 25(20), 2013
PMID: 23580458
Synthesis, structures, and magnetic properties of Fe, Fe, and Fe oxo-bridged iron clusters–the stabilization of high ground spin-state spins by cluster aggregates
AUTHOR UNKNOWN, 1995
Synthesis, structural characterization and preliminary magnetic studies of a tetraicosanuclear cobalt coordination complex
AUTHOR UNKNOWN, 1997
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25336061
PubMed | Europe PMC

Suchen in

Google Scholar