Volume mean densities for the heat equation

Hansen W, Netuka I (2014)
Potential Analysis 41(4): 1111-1126.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Hansen, WolfhardUniBi; Netuka, Ivan
Abstract / Bemerkung
It is shown that, for solid caps D of heat balls in a"e (d + 1) with center z (0) = (0, 0), there exist Borel measurable functions w on D such that inf w(D) > 0 and a << v(z)w(z) dz a parts per thousand currency sign v(z (0)), for every supertemperature v on a neighborhood of DI.... This disproves a conjecture by N. Suzuki and N.A. Watson. On the other hand, it turns out that there is no such volume mean density, if the bounded domain D in a"e (d) x (-a, 0) is only slightly wider at z (0) than a heat ball.
Stichworte
Representing measure; Mean value density; Fulks measure; Heat equation; Heat ball
Erscheinungsjahr
2014
Zeitschriftentitel
Potential Analysis
Band
41
Ausgabe
4
Seite(n)
1111-1126
ISSN
0926-2601
Page URI
https://pub.uni-bielefeld.de/record/2707688

Zitieren

Hansen W, Netuka I. Volume mean densities for the heat equation. Potential Analysis. 2014;41(4):1111-1126.
Hansen, W., & Netuka, I. (2014). Volume mean densities for the heat equation. Potential Analysis, 41(4), 1111-1126. doi:10.1007/s11118-014-9411-z
Hansen, W., and Netuka, I. (2014). Volume mean densities for the heat equation. Potential Analysis 41, 1111-1126.
Hansen, W., & Netuka, I., 2014. Volume mean densities for the heat equation. Potential Analysis, 41(4), p 1111-1126.
W. Hansen and I. Netuka, “Volume mean densities for the heat equation”, Potential Analysis, vol. 41, 2014, pp. 1111-1126.
Hansen, W., Netuka, I.: Volume mean densities for the heat equation. Potential Analysis. 41, 1111-1126 (2014).
Hansen, Wolfhard, and Netuka, Ivan. “Volume mean densities for the heat equation”. Potential Analysis 41.4 (2014): 1111-1126.