Single-molecule quantification of lipotoxic expression of activating transcription factor 3

Yahiatene I, Aung HH, Wilson DW, Rutledge JC (2014)
Physical Chemistry Chemical Physics 16(39): 21595-21601.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Yahiatene, IdirUniBi; Aung, Hnin H.; Wilson, Dennis W.; Rutledge, John C.
Abstract / Bemerkung
Activating transcription factor 3 (ATF3) is a member of the mammalian activation transcription factor/cAMP, physiologically important in the regulation of pro- and anti-inflammatory target genes. We compared the induction of ATF3 protein as measured by Western blot analysis with single-molecule localization microscopy dSTORM to quantify the dynamics of accumulation of intranuclear ATF3 of triglyceride-rich (TGRL) lipolysis product-treated HAEC (Human Aortic Endothelial Cells). The ATF3 expression rate within the first three hours after treatment with TGRL lipolysis products is about 3500 h(-1). After three hours we detected 33 090 3491 single-molecule localizations of ATF3. This was accompanied by significant structural changes in the F-actin network of the cells at similar to 3-fold increased localization precision compared to widefield microscopy after treatment. Additionally, we discovered a cluster size of approximately 384 nanometers of ATF3 molecules. We show for the first time the time course of ATF3 accumulation in the nucleus undergoing lipotoxic injury. Furthermore, we demonstrate ATF3 accumulation associated with increased concentrations of TGRL lipotysis products occurs in large aggregates.
Erscheinungsjahr
2014
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
16
Ausgabe
39
Seite(n)
21595-21601
ISSN
1463-9076
Page URI
https://pub.uni-bielefeld.de/record/2705552

Zitieren

Yahiatene I, Aung HH, Wilson DW, Rutledge JC. Single-molecule quantification of lipotoxic expression of activating transcription factor 3. Physical Chemistry Chemical Physics. 2014;16(39):21595-21601.
Yahiatene, I., Aung, H. H., Wilson, D. W., & Rutledge, J. C. (2014). Single-molecule quantification of lipotoxic expression of activating transcription factor 3. Physical Chemistry Chemical Physics, 16(39), 21595-21601. doi:10.1039/c4cp03260h
Yahiatene, Idir, Aung, Hnin H., Wilson, Dennis W., and Rutledge, John C. 2014. “Single-molecule quantification of lipotoxic expression of activating transcription factor 3”. Physical Chemistry Chemical Physics 16 (39): 21595-21601.
Yahiatene, I., Aung, H. H., Wilson, D. W., and Rutledge, J. C. (2014). Single-molecule quantification of lipotoxic expression of activating transcription factor 3. Physical Chemistry Chemical Physics 16, 21595-21601.
Yahiatene, I., et al., 2014. Single-molecule quantification of lipotoxic expression of activating transcription factor 3. Physical Chemistry Chemical Physics, 16(39), p 21595-21601.
I. Yahiatene, et al., “Single-molecule quantification of lipotoxic expression of activating transcription factor 3”, Physical Chemistry Chemical Physics, vol. 16, 2014, pp. 21595-21601.
Yahiatene, I., Aung, H.H., Wilson, D.W., Rutledge, J.C.: Single-molecule quantification of lipotoxic expression of activating transcription factor 3. Physical Chemistry Chemical Physics. 16, 21595-21601 (2014).
Yahiatene, Idir, Aung, Hnin H., Wilson, Dennis W., and Rutledge, John C. “Single-molecule quantification of lipotoxic expression of activating transcription factor 3”. Physical Chemistry Chemical Physics 16.39 (2014): 21595-21601.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet.
Rutkowsky JM, Lee LL, Puchowicz M, Golub MS, Befroy DE, Wilson DW, Anderson S, Cline G, Bini J, Borkowski K, Knotts TA, Rutledge JC, Mouse Metabolic Phenotyping Center Imaging Working Group., PLoS One 13(2), 2018
PMID: 29444171
Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target.
Zhou H, Li N, Yuan Y, Jin YG, Guo H, Deng W, Tang QZ., Basic Res Cardiol 113(5), 2018
PMID: 30094473
Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress.
Lee LL, Aung HH, Wilson DW, Anderson SE, Rutledge JC, Rutkowsky JM., Am J Physiol Cell Physiol 312(4), 2017
PMID: 28077357
Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways.
Aung HH, Altman R, Nyunt T, Kim J, Nuthikattu S, Budamagunta M, Voss JC, Wilson D, Rutledge JC, Villablanca AC., J Lipid Res 57(6), 2016
PMID: 27087439

31 References

Daten bereitgestellt von Europe PubMed Central.

Imaging intracellular fluorescent proteins at nanometer resolution.
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF., Science 313(5793), 2006
PMID: 16902090
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).
Rust MJ, Bates M, Zhuang X., Nat. Methods 3(10), 2006
PMID: 16896339

Shroff WH, Betzig E., 2013
Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).
Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J., Proc. Natl. Acad. Sci. U.S.A. 106(52), 2009
PMID: 20018714
Superresolving dendritic spines.
Loew LM, Hell SW., Biophys. J. 104(4), 2013
PMID: 23442950
STED nanoscopy with time-gated detection: theoretical and experimental aspects.
Vicidomini G, Schonle A, Ta H, Han KY, Moneron G, Eggeling C, Hell SW., PLoS ONE 8(1), 2013
PMID: 23349884
Simple buffers for 3D STORM microscopy.
Olivier N, Keller D, Rajan VS, Gonczy P, Manley S., Biomed Opt Express 4(6), 2013
PMID: 23761850
rapidSTORM: accurate, fast open-source software for localization microscopy.
Wolter S, Loschberger A, Holm T, Aufmkolk S, Dabauvalle MC, van de Linde S, Sauer M., Nat. Methods 9(11), 2012
PMID: 23132113
Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP- histones.
Matsuda A, Shao L, Boulanger J, Kervrann C, Carlton PM, Kner P, Agard D, Sedat JW., PLoS ONE 5(9), 2010
PMID: 20856676
Widely accessible method for superresolution fluorescence imaging of living systems.
Dedecker P, Mo GC, Dertinger T, Zhang J., Proc. Natl. Acad. Sci. U.S.A. 109(27), 2012
PMID: 22711840
Superresolution optical fluctuation imaging (SOFI).
Dertinger T, Colyer R, Vogel R, Heilemann M, Sauer M, Enderlein J, Weiss S., Adv. Exp. Med. Biol. 733(), 2012
PMID: 22101708
Superresolution optical fluctuation imaging with organic dyes.
Dertinger T, Heilemann M, Vogel R, Sauer M, Weiss S., Angew. Chem. Int. Ed. Engl. 49(49), 2010
PMID: 21031383
Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI).
Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S., Opt Express 18(18), 2010
PMID: 20940780
Suppression of quantum dot blinking in DTT-doped polymer films.
Antelman J, Ebenstein Y, Dertinger T, Michalet X, Weiss S., J Phys Chem C Nanomater Interfaces 113(27), 2009
PMID: 20161096
Direct stochastic optical reconstruction microscopy with standard fluorescent probes.
van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M., Nat Protoc 6(7), 2011
PMID: 21720313
Triglyceride-rich lipoproteins from hypertriglyceridemic subjects induce a pro-inflammatory response in the endothelium: Molecular mechanisms and gene expression studies.
Norata GD, Grigore L, Raselli S, Seccomandi PM, Hamsten A, Maggi FM, Eriksson P, Catapano AL., J. Mol. Cell. Cardiol. 40(4), 2006
PMID: 16516917
Post-prandial endothelial dysfunction in hypertriglyceridemic subjects: molecular mechanisms and gene expression studies.
Norata GD, Grigore L, Raselli S, Redaelli L, Hamsten A, Maggi F, Eriksson P, Catapano AL., Atherosclerosis 193(2), 2006
PMID: 17055512
Triglyceride-rich lipoproteins prime aortic endothelium for an enhanced inflammatory response to tumor necrosis factor-alpha.
Ting HJ, Stice JP, Schaff UY, Hui DY, Rutledge JC, Knowlton AA, Passerini AG, Simon SI., Circ. Res. 100(3), 2007
PMID: 17234968
Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation.
Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC., J. Lipid Res. 50(2), 2008
PMID: 18812596
Direct visualization of lipid deposition and reverse lipid transport in a perfused artery : roles of VLDL and HDL.
Rutledge JC, Mullick AE, Gardner G, Goldberg IJ., Circ. Res. 86(7), 2000
PMID: 10764410
Triglyceride-rich lipoprotein lipolysis increases aggregation of endothelial cell membrane microdomains and produces reactive oxygen species.
Wang L, Sapuri-Butti AR, Aung HH, Parikh AN, Rutledge JC., Am. J. Physiol. Heart Circ. Physiol. 295(1), 2008
PMID: 18487440

Aung HH, Lame MW, Gohil K, An CI, Wilson DW, Rutledge JC., 2013
Iron accumulation in Alzheimer disease is a source of redox-generated free radicals.
Smith MA, Harris PL, Sayre LM, Perry G., Proc. Natl. Acad. Sci. U.S.A. 94(18), 1997
PMID: 9275217
Spinal cord of the rat contains more lipoprotein lipase than other brain regions.
Bessesen DH, Richards CL, Etienne J, Goers JW, Eckel RH., J. Lipid Res. 34(2), 1993
PMID: 8429258

Yahiatene Idir, Hennig Simon, Huser Thomas., 2013

Henriques R, Lelek M, Fornasiero EF., 2010

Sebastian M., Barbara Müller, Hans-Georg Krausslich, Mike Heilemann., 2013
ATF3 transcription factor and its emerging roles in immunity and cancer.
Thompson MR, Xu D, Williams BR., J. Mol. Med. 87(11), 2009
PMID: 19705082
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25189785
PubMed | Europe PMC

Suchen in

Google Scholar