Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol

Müller JEN, Heggeset TMB, Wendisch VF, Vorholt JA, Brautaset T (2015)
Applied Microbiology and Biotechnology 99(2): 535-551.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Müller, Jonas E. N.; Heggeset, Tonje M. B.; Wendisch, Volker F.UniBi ; Vorholt, Julia A.; Brautaset, Trygve
Abstract / Bemerkung
Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids l-glutamate and l-lysine to high concentrations at 50 A degrees C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids.
Stichworte
Methylotrophy; Ribulose monophosphate cycle; L-Lysine biosynthesis; L-Glutamate biosynthesis; Genetic tools; Industrial biotechnology
Erscheinungsjahr
2015
Zeitschriftentitel
Applied Microbiology and Biotechnology
Band
99
Ausgabe
2
Seite(n)
535-551
ISSN
0175-7598
Page URI
https://pub.uni-bielefeld.de/record/2703278

Zitieren

Müller JEN, Heggeset TMB, Wendisch VF, Vorholt JA, Brautaset T. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol. Applied Microbiology and Biotechnology. 2015;99(2):535-551.
Müller, J. E. N., Heggeset, T. M. B., Wendisch, V. F., Vorholt, J. A., & Brautaset, T. (2015). Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol. Applied Microbiology and Biotechnology, 99(2), 535-551. doi:10.1007/s00253-014-6224-3
Müller, Jonas E. N., Heggeset, Tonje M. B., Wendisch, Volker F., Vorholt, Julia A., and Brautaset, Trygve. 2015. “Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol”. Applied Microbiology and Biotechnology 99 (2): 535-551.
Müller, J. E. N., Heggeset, T. M. B., Wendisch, V. F., Vorholt, J. A., and Brautaset, T. (2015). Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol. Applied Microbiology and Biotechnology 99, 535-551.
Müller, J.E.N., et al., 2015. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol. Applied Microbiology and Biotechnology, 99(2), p 535-551.
J.E.N. Müller, et al., “Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol”, Applied Microbiology and Biotechnology, vol. 99, 2015, pp. 535-551.
Müller, J.E.N., Heggeset, T.M.B., Wendisch, V.F., Vorholt, J.A., Brautaset, T.: Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol. Applied Microbiology and Biotechnology. 99, 535-551 (2015).
Müller, Jonas E. N., Heggeset, Tonje M. B., Wendisch, Volker F., Vorholt, Julia A., and Brautaset, Trygve. “Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity productions from methanol”. Applied Microbiology and Biotechnology 99.2 (2015): 535-551.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Phage-Assisted Evolution of Bacillus methanolicus Methanol Dehydrogenase 2.
Roth TB, Woolston BM, Stephanopoulos G, Liu DR., ACS Synth Biol 8(4), 2019
PMID: 30856338
Development of a formaldehyde biosensor with application to synthetic methylotrophy.
Woolston BM, Roth T, Kohale I, Liu DR, Stephanopoulos G., Biotechnol Bioeng 115(1), 2018
PMID: 28921510
Methanol-essential growth of Escherichia coli.
Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA., Nat Commun 9(1), 2018
PMID: 29666370
Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.
Woolston BM, King JR, Reiter M, Van Hove B, Stephanopoulos G., Nat Commun 9(1), 2018
PMID: 29921903
Development of Bacillus methanolicus methanol dehydrogenase with improved formaldehyde reduction activity.
Yi J, Lee J, Sung BH, Kang DK, Lim G, Bae JH, Lee SG, Kim SC, Sohn JH., Sci Rep 8(1), 2018
PMID: 30127388
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.
Nærdal I, Netzer R, Irla M, Krog A, Heggeset TMB, Wendisch VF, Brautaset T., J Biotechnol 244(), 2017
PMID: 28163092
6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28213736
Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.
Carnicer M, Vieira G, Brautaset T, Portais JC, Heux S., Microb Cell Fact 15(), 2016
PMID: 27251037
Methylobacterium extorquens: methylotrophy and biotechnological applications.
Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA., Appl Microbiol Biotechnol 99(2), 2015
PMID: 25432674
Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria.
McTaggart TL, Beck DA, Setboonsarng U, Shapiro N, Woyke T, Lidstrom ME, Kalyuzhnaya MG, Chistoserdova L., Microorganisms 3(1), 2015
PMID: 27682081
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26276544

70 References

Daten bereitgestellt von Europe PubMed Central.

L-lysine fermentation.
Anastassiadis S., Recent Pat Biotechnol 1(1), 2007
PMID: 19075830

C, 1982
Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme.
Arfman N, Watling EM, Clement W, van Oosterwijk RJ, de Vries GE, Harder W, Attwood MM, Dijkhuizen L., Arch. Microbiol. 152(3), 1989
PMID: 2673121
3-Hexulose-6-phosphate synthase from thermotolerant methylotroph Bacillus C1.
Arfman N, Bystrykh L, Govorukhina NI, Dijkhuizen L., Meth. Enzymol. 188(), 1990
PMID: 2280711
Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp.
Arfman N, Van Beeumen J, De Vries GE, Harder W, Dijkhuizen L., J. Biol. Chem. 266(6), 1991
PMID: 1995643
Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains.
Arfman N, de Vries KJ, Moezelaar HR, Attwood MM, Robinson GK, van Geel M, Dijkhuizen L., Arch. Microbiol. 157(3), 1992
PMID: 1510560
Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria.
Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH, Bulygina ES, Chumakov KM, Govorukhina NI, Trotsenko YA, White D., Int. J. Syst. Bacteriol. 42(3), 1992
PMID: 1380290
Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus.
Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J., Eur. J. Biochem. 244(2), 1997
PMID: 9119008

AUTHOR UNKNOWN, 0

T, 2011
Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants.
Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC., Appl. Environ. Microbiol. 69(7), 2003
PMID: 12839772
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Josefsen KD, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 74(1), 2007
PMID: 17216461
Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20372887
Modularity of methylotrophy, revisited.
Chistoserdova L., Environ. Microbiol. 13(10), 2011
PMID: 21443740

L, 2013
The expanding world of methylotrophic metabolism.
Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME., Annu. Rev. Microbiol. 63(), 2009
PMID: 19514844
Characterization of a restriction-modification system of the thermotolerant methylotroph Bacillus methanolicus.
Cue D, Lam H, Hanson RS, Flickinger MC., Appl. Environ. Microbiol. 62(3), 1996
PMID: 8975604
Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.
Cue D, Lam H, Dillingham RL, Hanson RS, Flickinger MC., Appl. Environ. Microbiol. 63(4), 1997
PMID: 9097439

L, Fems Microbiol Lett 52(), 1988

AUTHOR UNKNOWN, 2005
Aspartokinase III, a new isozyme in Bacillus subtilis 168.
Graves LM, Switzer RL., J. Bacteriol. 172(1), 1990
PMID: 2152900
The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes.
Grundy FJ, Lehman SC, Henkin TM., Proc. Natl. Acad. Sci. U.S.A. 100(21), 2003
PMID: 14523230
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424
Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph.
Irla M, Neshat A, Winkler A, Albersmeier A, Heggeset TM, Brautaset T, Kalinowski J, Wendisch VF, Ruckert C., J. Biotechnol. 188(), 2014
PMID: 25152427
Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE., Appl. Environ. Microbiol. 75(3), 2008
PMID: 19060158
Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum.
Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H., Appl. Microbiol. Biotechnol. 81(6), 2008
PMID: 18923827
Growth of Bacillus methanolicus in seawater-based media.
Komives CF, Cheung LY, Pluschkell SB, Flickinger MC., J. Ind. Microbiol. Biotechnol. 32(2), 2005
PMID: 15726441
Cloning and nucleotide sequence of Bacillus stearothermophilus pyruvate carboxylase.
Kondo H, Kazuta Y, Saito A, Fuji K., Gene 191(1), 1997
PMID: 9210587
Genetic tool development for a new host for biotechnology, the thermotolerant bacterium Bacillus coagulans.
Kovacs AT, van Hartskamp M, Kuipers OP, van Kranenburg R., Appl. Environ. Microbiol. 76(12), 2010
PMID: 20400555
Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
Muller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA., Proteomics 14(6), 2014
PMID: 24452867
Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus.
Nærdal I, Netzer R, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 77(17), 2011
PMID: 21724876

AUTHOR UNKNOWN, 0
Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability.
Nguyen HD, Nguyen QA, Ferreira RC, Ferreira LC, Tran LT, Schumann W., Plasmid 54(3), 2005
PMID: 16005967
Expression of recombinant green fluorescent protein in Bacillus methanolicus.
Nilasari D, Dover N, Rech S, Komives C., Biotechnol. Prog. 28(3), 2012
PMID: 22275315

AUTHOR UNKNOWN, 0
A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant.
Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M., Appl. Microbiol. Biotechnol. 58(2), 2002
PMID: 11876415
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA., Trends Biotechnol. 27(2), 2008
PMID: 19111927
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Stolzenberger J, Lindner SN, Wendisch VF., Microbiology (Reading, Engl.) 159(Pt 8), 2013
PMID: 23760818

SR, 1975

AUTHOR UNKNOWN, 0
Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1.
Vonck J, Arfman N, De Vries GE, Van Beeumen J, Van Bruggen EF, Dijkhuizen L., J. Biol. Chem. 266(6), 1991
PMID: 1995642
Double deletion of dtsR1 and pyc induce efficient L: -glutamate overproduction in Corynebacterium glutamicum.
Yao W, Deng X, Zhong H, Liu M, Zheng P, Sun Z, Zhang Y., J. Ind. Microbiol. Biotechnol. 36(7), 2009
PMID: 19408028
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25431011
PubMed | Europe PMC

Suchen in

Google Scholar